Nuprl Lemma : geo-same-side-iff
∀[e:BasicGeometry]. ∀[A,B,P,Q:Point].
  (P,Q-AB 
⇐⇒ ((¬Colinear(A;B;P)) ∧ (¬Colinear(A;B;Q))) ∧ (¬P leftof AB 
⇐⇒ ¬Q leftof AB))
Proof
Definitions occuring in Statement : 
geo-same-side: A,B-PQ
, 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-left: a leftof bc
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
geo-same-side: A,B-PQ
, 
all: ∀x:A. B[x]
, 
basic-geometry: BasicGeometry
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
geo-lsep: a # bc
, 
or: P ∨ Q
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
stable: Stable{P}
, 
euclidean-plane: EuclideanPlane
, 
cand: A c∧ B
, 
geo-colinear: Colinear(a;b;c)
Lemmas referenced : 
geo-between-trivial2, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-between-trivial, 
geo-left_wf, 
istype-void, 
geo-same-side_wf, 
geo-point_wf, 
stable__false, 
false_wf, 
or_wf, 
geo-lsep_wf, 
not_wf, 
not-lsep-iff-colinear, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
geo-SS_wf, 
geo-between-symmetry, 
geo-between_wf, 
left-between, 
euclidean-plane-subtype-oriented, 
oriented-plane_wf, 
lsep-all-sym2, 
lsep-all-sym, 
geo-between-implies-colinear
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation_alt, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
extract_by_obid, 
isectElimination, 
voidElimination, 
universeIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
functionIsType, 
productElimination, 
productIsType, 
independent_pairEquality, 
lambdaEquality_alt, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionEquality, 
unionElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
unionIsType, 
setElimination, 
rename, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[A,B,P,Q:Point].
    (P,Q-AB  \mLeftarrow{}{}\mRightarrow{}  ((\mneg{}Colinear(A;B;P))  \mwedge{}  (\mneg{}Colinear(A;B;Q)))  \mwedge{}  (\mneg{}P  leftof  AB  \mLeftarrow{}{}\mRightarrow{}  \mneg{}Q  leftof  AB))
Date html generated:
2019_10_16-PM-01_20_50
Last ObjectModification:
2018_12_11-PM-00_15_45
Theory : euclidean!plane!geometry
Home
Index