Nuprl Lemma : hp-angle-sum-subst4

g:EuclideanPlane. ∀a,b,c,d,e,f,x,y,z,i,j,k:Point.
  (abc def ≅ xyz  xyz ≅a ijk  x-y-z  bc  ef  abc def ≅ ijk)


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q hp-angle-sum: abc xyz ≅ def exists: x:A. B[x] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry geo-cong-angle: abc ≅a xyz cand: c∧ B geo-out: out(p ab)
Lemmas referenced :  geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-strict-between_wf geo-cong-angle_wf hp-angle-sum_wf geo-point_wf Euclid-Prop23 geo-sep-sym geo-between-trivial2 geo-between_wf geo-out_wf geo-cong-angle-symmetry lsep-implies-sep geo-out_weakening geo-eq_weakening geo-out_inversion out-preserves-angle-cong_1 supplementary-angles-preserve-congruence geo-cong-angle-transitivity euclidean-plane-axioms geo-cong-angle-symm2 angle-cong-preserves-straight-angle geo-between-symmetry geo-strict-between-implies-between extended-out-preserves-between
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache dependent_functionElimination inhabitedIsType independent_functionElimination dependent_pairFormation_alt independent_pairFormation productIsType

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f,x,y,z,i,j,k:Point.
    (abc  +  def  \mcong{}  xyz  {}\mRightarrow{}  xyz  \mcong{}\msuba{}  ijk  {}\mRightarrow{}  x-y-z  {}\mRightarrow{}  a  \#  bc  {}\mRightarrow{}  d  \#  ef  {}\mRightarrow{}  abc  +  def  \mcong{}  ijk)



Date html generated: 2019_10_16-PM-02_31_50
Last ObjectModification: 2019_08_05-PM-03_23_27

Theory : euclidean!plane!geometry


Home Index