Nuprl Lemma : line-implies-plsep-exists
∀g:ProjectivePlane. ∀l:Line.  ∃p:Point. p ≠ l
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
or: P ∨ Q
, 
prop: ℙ
Lemmas referenced : 
pgeo-primitives_wf, 
projective-plane-structure_subtype, 
pgeo-line_wf, 
point-implies-plsep-exists, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
pgeo-three-points-axiom, 
pgeo-plsep-to-lsep, 
Meet, 
use-triangle-axiom1, 
pgeo-plsep-to-psep, 
projective-plane-subtype-basic, 
pgeo-plsep-implies-join, 
pgeo-incident_wf, 
pgeo-join_wf, 
LP-sep-or2, 
pgeo-plsep_wf, 
pgeo-join-implies-plsep, 
incident-join-second
Rules used in proof : 
productElimination, 
sqequalRule, 
independent_isectElimination, 
isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
rename, 
because_Cache, 
independent_pairFormation, 
unionElimination, 
productEquality, 
setEquality, 
setElimination, 
lambdaEquality, 
dependent_pairFormation
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l:Line.    \mexists{}p:Point.  p  \mneq{}  l
Date html generated:
2018_05_22-PM-00_42_16
Last ObjectModification:
2017_11_28-PM-05_42_12
Theory : euclidean!plane!geometry
Home
Index