Nuprl Lemma : line-implies-plsep-exists

g:ProjectivePlane. ∀l:Line.  ∃p:Point. p ≠ l


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] exists: x:A. B[x]
Definitions unfolded in proof :  and: P ∧ Q exists: x:A. B[x] uimplies: supposing a guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x] implies:  Q cand: c∧ B or: P ∨ Q prop:
Lemmas referenced :  pgeo-primitives_wf projective-plane-structure_subtype pgeo-line_wf point-implies-plsep-exists projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype pgeo-three-points-axiom pgeo-plsep-to-lsep Meet use-triangle-axiom1 pgeo-plsep-to-psep projective-plane-subtype-basic pgeo-plsep-implies-join pgeo-incident_wf pgeo-join_wf LP-sep-or2 pgeo-plsep_wf pgeo-join-implies-plsep incident-join-second
Rules used in proof :  productElimination sqequalRule independent_isectElimination isectElimination instantiate hypothesis applyEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination rename because_Cache independent_pairFormation unionElimination productEquality setEquality setElimination lambdaEquality dependent_pairFormation

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l:Line.    \mexists{}p:Point.  p  \mneq{}  l



Date html generated: 2018_05_22-PM-00_42_16
Last ObjectModification: 2017_11_28-PM-05_42_12

Theory : euclidean!plane!geometry


Home Index