Nuprl Lemma : pgeo-meet-implies-psep2

g:ProjectivePlane. ∀l,m:Line. ∀s:l ≠ m. ∀a:Point. ∀c:{c:Point| l ∧ m} .  (a ≠  a ≠ l ∧ m)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-meet: l ∧ m pgeo-lsep: l ≠ m pgeo-psep: a ≠ b pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q pgeo-psep: a ≠ b exists: x:A. B[x] and: P ∧ Q member: t ∈ T cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a prop: or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T pgeo-peq: a ≡ b not: ¬A false: False
Lemmas referenced :  LP-sep-or2 projective-plane-structure-complete_subtype projective-plane-subtype subtype_rel_transitivity projective-plane_wf projective-plane-structure-complete_wf projective-plane-structure_wf pgeo-meet_wf pgeo-point_wf pgeo-incident_wf pgeo-plsep_wf pgeo-psep_wf projective-plane-structure_subtype pgeo-primitives_wf set_wf pgeo-lsep_wf pgeo-line_wf pgeo-meet-to-point projective-plane-subtype-basic sq_stable__pgeo-incident pgeo-psep-sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut hypothesis independent_pairFormation introduction extract_by_obid dependent_functionElimination applyEquality instantiate isectElimination independent_isectElimination sqequalRule because_Cache setElimination rename lambdaEquality setEquality productEquality independent_functionElimination unionElimination imageMemberEquality baseClosed imageElimination voidElimination

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l,m:Line.  \mforall{}s:l  \mneq{}  m.  \mforall{}a:Point.  \mforall{}c:\{c:Point|  c  I  l  \mwedge{}  c  I  m\}  .
    (a  \mneq{}  c  {}\mRightarrow{}  a  \mneq{}  l  \mwedge{}  m)



Date html generated: 2018_05_22-PM-00_43_06
Last ObjectModification: 2017_12_05-AM-10_45_28

Theory : euclidean!plane!geometry


Home Index