Nuprl Lemma : pgeo-meet-implies-psep2
∀g:ProjectivePlane. ∀l,m:Line. ∀s:l ≠ m. ∀a:Point. ∀c:{c:Point| c I l ∧ c I m} .  (a ≠ c 
⇒ a ≠ l ∧ m)
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-meet: l ∧ m
, 
pgeo-lsep: l ≠ m
, 
pgeo-psep: a ≠ b
, 
pgeo-incident: a I b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
pgeo-psep: a ≠ b
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
pgeo-peq: a ≡ b
, 
not: ¬A
, 
false: False
Lemmas referenced : 
LP-sep-or2, 
projective-plane-structure-complete_subtype, 
projective-plane-subtype, 
subtype_rel_transitivity, 
projective-plane_wf, 
projective-plane-structure-complete_wf, 
projective-plane-structure_wf, 
pgeo-meet_wf, 
pgeo-point_wf, 
pgeo-incident_wf, 
pgeo-plsep_wf, 
pgeo-psep_wf, 
projective-plane-structure_subtype, 
pgeo-primitives_wf, 
set_wf, 
pgeo-lsep_wf, 
pgeo-line_wf, 
pgeo-meet-to-point, 
projective-plane-subtype-basic, 
sq_stable__pgeo-incident, 
pgeo-psep-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
hypothesis, 
independent_pairFormation, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
setElimination, 
rename, 
lambdaEquality, 
setEquality, 
productEquality, 
independent_functionElimination, 
unionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
voidElimination
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l,m:Line.  \mforall{}s:l  \mneq{}  m.  \mforall{}a:Point.  \mforall{}c:\{c:Point|  c  I  l  \mwedge{}  c  I  m\}  .
    (a  \mneq{}  c  {}\mRightarrow{}  a  \mneq{}  l  \mwedge{}  m)
Date html generated:
2018_05_22-PM-00_43_06
Last ObjectModification:
2017_12_05-AM-10_45_28
Theory : euclidean!plane!geometry
Home
Index