Nuprl Lemma : rng-pp-nontrivial-3-ext

r:IntegDom{i}. ∀eq:EqDecider(|r|). ∀l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} .
  ∃a,b,c:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
   ((¬¬((a l) 0 ∈ |r|))
   ∧ (¬¬((b l) 0 ∈ |r|))
   ∧ (¬¬((c l) 0 ∈ |r|))
   ∧ (∃l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} ((¬¬((a l) 0 ∈ |r|)) ∧ ((b l) 0 ∈ |r|))))
   ∧ (∃l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} ((¬¬((b l) 0 ∈ |r|)) ∧ ((c l) 0 ∈ |r|))))
   ∧ (∃l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} ((¬¬((c l) 0 ∈ |r|)) ∧ ((a l) 0 ∈ |r|)))))


Proof




Definitions occuring in Statement :  deq: EqDecider(T) int_seg: {i..j-} all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r| scalar-product: (a b) zero-vector: 0
Definitions unfolded in proof :  prop: has-value: (a)↓ implies:  Q all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] rng-pp-nontrivial-1-ext cross-product-non-zero-implies-ext any: any x deq-implies rng-pp-nontrivial-2 rng-pp-nontrivial-3 rng-pp-nontriv1: rng-pp-nontriv1(r;eq;l) it: member: t ∈ T
Lemmas referenced :  is-exception_wf has-value_wf_base equal_wf top_wf lifting-strict-int_eq lifting-strict-callbyvalue strict4-spread lifting-strict-spread rng-pp-nontrivial-3 rng-pp-nontrivial-1-ext cross-product-non-zero-implies-ext deq-implies rng-pp-nontrivial-2
Rules used in proof :  closedConclusion baseApply exceptionSqequal axiomSqleEquality spreadExceptionCases independent_functionElimination dependent_functionElimination hypothesisEquality sqleReflexivity productElimination productEquality callbyvalueSpread divergentSqle sqequalSqle lambdaFormation independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed isectElimination equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}r:IntegDom\{i\}.  \mforall{}eq:EqDecider(|r|).  \mforall{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .
    \mexists{}a,b,c:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\} 
      ((\mneg{}\mneg{}((a  .  l)  =  0))
      \mwedge{}  (\mneg{}\mneg{}((b  .  l)  =  0))
      \mwedge{}  (\mneg{}\mneg{}((c  .  l)  =  0))
      \mwedge{}  (\mexists{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  ((\mneg{}\mneg{}((a  .  l)  =  0))  \mwedge{}  (\mneg{}((b  .  l)  =  0))))
      \mwedge{}  (\mexists{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  ((\mneg{}\mneg{}((b  .  l)  =  0))  \mwedge{}  (\mneg{}((c  .  l)  =  0))))
      \mwedge{}  (\mexists{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  ((\mneg{}\mneg{}((c  .  l)  =  0))  \mwedge{}  (\mneg{}((a  .  l)  =  0)))))



Date html generated: 2018_05_22-PM-00_54_18
Last ObjectModification: 2018_05_21-AM-01_24_59

Theory : euclidean!plane!geometry


Home Index