Nuprl Lemma : rng-pp-nontrivial-2

r:IntegDom{i}
  ((∀x,y:|r|.  Dec(x y ∈ |r|))
   (∀l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
        ∃a,b,c:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
         (((a l) 0 ∈ |r|)
         ∧ ((b l) 0 ∈ |r|)
         ∧ ((c l) 0 ∈ |r|)
         ∧ ((a b) 0 ∈ (ℕ3 ⟶ |r|)))
         ∧ ((b c) 0 ∈ (ℕ3 ⟶ |r|)))
         ∧ ((c a) 0 ∈ (ℕ3 ⟶ |r|))))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} decidable: Dec(P) all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r| scalar-product: (a b) cross-product: (a b) zero-vector: 0
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B squash: T true: True vector-add: (a b) zero-vector: 0 infix_ap: y vector-mul: (c*a) so_apply: x[s] so_lambda: λ2x.t[x] less_than': less_than'(a;b) le: A ≤ B nat: rng: Rng crng: CRng integ_dom: IntegDom{i} uall: [x:A]. B[x] prop: false: False not: ¬A cand: c∧ B and: P ∧ Q sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  zero-vector-add-left cross-product-distrib2 zero-vector-add-right cross-product-distrib1 cross-product-anti-comm scalar-product-add-left cross-product-same vector-mul_wf cross-product-mul1 mul-zero-vector rng_sig_wf iff_weakening_equal rng_plus_zero rng_plus_inv rng_plus_comm rng_plus_assoc rng_times_one subtype_rel_self rng_times_over_minus true_wf squash_wf rng_one_wf rng_minus_wf rng_times_wf rng_plus_wf vector-add_wf integ_dom_wf decidable_wf all_wf rng_zero_wf exists_wf not_wf le_wf false_wf scalar-product_wf zero-vector_wf cross-product_wf rng_car_wf int_seg_wf equal_wf rng-pp-nontrivial-1-ext
Rules used in proof :  levelHypothesis equalityUniverse independent_isectElimination instantiate baseClosed imageMemberEquality universeEquality imageElimination applyLambdaEquality lambdaEquality applyEquality functionExtensionality setEquality sqequalRule dependent_set_memberEquality equalitySymmetry equalityTransitivity productEquality because_Cache natural_numberEquality functionEquality isectElimination voidElimination independent_pairFormation rename setElimination dependent_pairFormation productElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}r:IntegDom\{i\}
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\} 
                \mexists{}a,b,c:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\} 
                  (((a  .  l)  =  0)
                  \mwedge{}  ((b  .  l)  =  0)
                  \mwedge{}  ((c  .  l)  =  0)
                  \mwedge{}  (\mneg{}((a  x  b)  =  0))
                  \mwedge{}  (\mneg{}((b  x  c)  =  0))
                  \mwedge{}  (\mneg{}((c  x  a)  =  0)))))



Date html generated: 2018_05_22-PM-00_53_46
Last ObjectModification: 2018_05_21-AM-01_23_44

Theory : euclidean!plane!geometry


Home Index