Nuprl Lemma : cross-product-distrib1
∀[r:CRng]. ∀[a,b,c:ℕ3 ⟶ |r|].  ((a x (b + c)) = ((a x b) + (a x c)) ∈ (ℕ3 ⟶ |r|))
Proof
Definitions occuring in Statement : 
cross-product: (a x b)
, 
vector-add: (a + b)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
rng: Rng
, 
crng: CRng
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
cons: [a / b]
, 
select: L[n]
, 
vector-add: (a + b)
, 
cross-product: (a x b)
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rng_times_wf, 
infix_ap_wf, 
rng_minus_wf, 
lelt_wf, 
rng_plus_wf, 
crng_wf, 
rng_car_wf, 
int_seg_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
full-omega-unsat, 
int_seg_cases, 
false_wf, 
int_seg_subtype, 
int_seg_properties, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
equal_wf, 
squash_wf, 
true_wf, 
rng_times_over_plus, 
rng_minus_over_plus, 
rng_plus_assoc, 
rng_plus_comm, 
rng_plus_ac_1, 
iff_weakening_equal
Rules used in proof : 
baseClosed, 
imageMemberEquality, 
dependent_set_memberEquality, 
applyEquality, 
axiomEquality, 
functionEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
approximateComputation, 
productElimination, 
lambdaFormation, 
independent_pairFormation, 
addEquality, 
hypothesis_subsumption, 
sqequalRule, 
equalitySymmetry, 
equalityTransitivity, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
intEquality, 
cumulativity, 
isectElimination, 
instantiate, 
unionElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
functionExtensionality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
universeEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].    ((a  x  (b  +  c))  =  ((a  x  b)  +  (a  x  c)))
Date html generated:
2018_05_21-PM-09_41_12
Last ObjectModification:
2017_12_18-PM-00_33_50
Theory : matrices
Home
Index