Nuprl Lemma : tarski-erect-perp-in

e:HeytingGeometry. ∀a,b,c:Point.  (c ba  (∃p:Point. (ab  ⊥pa ∧ ab)))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-perp-in: ab  ⊥cd geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  heyting-geometry: Error :heyting-geometry,  or: P ∨ Q prop: uimplies: supposing a uall: [x:A]. B[x] subtype_rel: A ⊆B exists: x:A. B[x] cand: c∧ B and: P ∧ Q guard: {T} member: t ∈ T implies:  Q all: x:A. B[x] subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) geo-perp-in: ab  ⊥cd
Lemmas referenced :  Error :basic-geo-primitives_wf,  geo-point_wf Error :geo-triangle_wf,  geo-sep_wf geo-triangle-property geo-sep-sym Error :basic-geo-structure_wf,  basic-geometry_wf Error :heyting-geometry_wf,  subtype_rel_transitivity heyting-geometry-subtype basic-geometry-subtype geo-sep-or geo-triangle-symmetry tarski-perp-in-exists geo-perp-in_wf perp-aux-general-construction geo-colinear_wf lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-colinear-is-colinear-set geo-colinear-same
Rules used in proof :  rename setElimination unionElimination dependent_set_memberEquality sqequalRule independent_isectElimination isectElimination instantiate applyEquality productElimination hypothesis because_Cache independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productEquality dependent_pairFormation independent_pairFormation baseClosed imageMemberEquality natural_numberEquality voidEquality voidElimination isect_memberEquality

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.    (c  \#  ba  {}\mRightarrow{}  (\mexists{}p:Point.  (ab    \mbot{}a  pa  \mwedge{}  p  \#  ab)))



Date html generated: 2017_10_02-PM-07_10_43
Last ObjectModification: 2017_08_08-PM-00_37_13

Theory : euclidean!plane!geometry


Home Index