Nuprl Lemma : ip-ge_wf

[rv:InnerProductSpace]. ∀[a,b,c,d:Point].  (cd ≥ ab ∈ ℙ)


Proof




Definitions occuring in Statement :  ip-ge: cd ≥ ab inner-product-space: InnerProductSpace ss-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ip-ge: cd ≥ ab subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  not_wf exists_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ip-between_wf ip-congruent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination lambdaEquality because_Cache productEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point].    (cd  \mgeq{}  ab  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_02_20
Last ObjectModification: 2017_03_19-PM-00_39_54

Theory : inner!product!spaces


Home Index