Nuprl Lemma : ip-ge_wf
∀[rv:InnerProductSpace]. ∀[a,b,c,d:Point].  (cd ≥ ab ∈ ℙ)
Proof
Definitions occuring in Statement : 
ip-ge: cd ≥ ab
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ip-ge: cd ≥ ab
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
not_wf, 
exists_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ip-between_wf, 
ip-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point].    (cd  \mgeq{}  ab  \mmember{}  \mBbbP{})
Date html generated:
2017_10_05-AM-00_02_20
Last ObjectModification:
2017_03_19-PM-00_39_54
Theory : inner!product!spaces
Home
Index