Nuprl Lemma : ip-gt_wf

[rv:InnerProductSpace]. ∀[a,b,c,d:Point].  (cd > ab ∈ ℙ)


Proof




Definitions occuring in Statement :  ip-gt: cd > ab inner-product-space: InnerProductSpace ss-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ip-gt: cd > ab subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] guard: {T} uimplies: supposing a
Lemmas referenced :  squash_wf exists_wf ss-point_wf ip-between_wf ip-congruent_wf ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis lambdaEquality productEquality axiomEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination isect_memberEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point].    (cd  >  ab  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_02_27
Last ObjectModification: 2017_03_19-PM-02_45_44

Theory : inner!product!spaces


Home Index