Nuprl Lemma : proj-eq_weakening
∀[n:ℕ]. ∀[a,b:ℙ^n]. a = b supposing a = b ∈ ℙ^n
Proof
Definitions occuring in Statement :
proj-eq: a = b
,
real-proj: ℙ^n
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
proj-eq: a = b
,
all: ∀x:A. B[x]
,
real-proj: ℙ^n
,
real-vec: ℝ^n
,
nat: ℕ
Lemmas referenced :
proj-eq_wf,
squash_wf,
true_wf,
iff_weakening_equal,
req_witness,
rmul_wf,
int_seg_wf,
equal_wf,
real-proj_wf,
nat_wf,
req_weakening
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
because_Cache,
natural_numberEquality,
sqequalRule,
imageMemberEquality,
baseClosed,
universeEquality,
independent_isectElimination,
productElimination,
independent_functionElimination,
dependent_functionElimination,
setElimination,
rename,
addEquality,
isect_memberEquality,
lambdaFormation
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[a,b:\mBbbP{}\^{}n]. a = b supposing a = b
Date html generated:
2017_10_05-AM-00_18_39
Last ObjectModification:
2017_06_17-AM-10_07_56
Theory : inner!product!spaces
Home
Index