Nuprl Lemma : proj-incidence_wf

[n:ℕ]. ∀[p,v:ℙ^n].  (v on p ∈ ℙ)


Proof




Definitions occuring in Statement :  proj-incidence: on p real-proj: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T proj-incidence: on p nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: real-proj: ^n subtype_rel: A ⊆B
Lemmas referenced :  req_wf dot-product_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf proj-rev_wf int-to-real_wf real-proj_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,v:\mBbbP{}\^{}n].    (v  on  p  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_19_36
Last ObjectModification: 2017_06_17-AM-10_08_42

Theory : inner!product!spaces


Home Index