Nuprl Lemma : proj-rev_wf

[n:ℕ]. ∀[p:ℙ^n].  (proj-rev(n;p) ∈ ℙ^n)


Proof




Definitions occuring in Statement :  proj-rev: proj-rev(n;p) real-proj: ^n nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-proj: ^n nat: so_lambda: λ2x.t[x] real-vec: ^n so_apply: x[s] exists: x:A. B[x] prop: proj-rev: proj-rev(n;p) int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  exists_wf int_seg_wf rneq_wf int-to-real_wf real-proj_wf nat_wf ifthenelse_wf lt_int_wf real_wf rminus_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf rminus-neq-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality extract_by_obid isectElimination natural_numberEquality addEquality hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality productElimination dependent_pairFormation lambdaFormation unionElimination equalityElimination independent_isectElimination promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbP{}\^{}n].    (proj-rev(n;p)  \mmember{}  \mBbbP{}\^{}n)



Date html generated: 2017_10_05-AM-00_19_23
Last ObjectModification: 2017_06_17-AM-10_08_26

Theory : inner!product!spaces


Home Index