Nuprl Lemma : uhg-identity1

[t1,t2,t3,t4:ℝ].
  ((((((r1 (t1 t2)) (t3 t4)) (r1 (t3 t4)) (t1 t2))
  (((r1 (t1 t3)) (t2 t4)) (r1 (t2 t4)) (t1 t3)))
  ((r(2) ((t3 t4) t1 t2)) r(2) ((t2 t4) t1 t3)))
  ((((r1 t1 t2) (t3 t4)) (r1 t3 t4) (t1 t2))
    (((r1 t1 t3) (t2 t4)) (r1 t2 t4) (t1 t3))))


Proof




Definitions occuring in Statement :  rsub: y req: y rmul: b radd: b int-to-real: r(n) real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  req_witness rmul_wf rsub_wf int-to-real_wf radd_wf real_wf itermSubtract_wf itermAdd_wf itermMultiply_wf itermConstant_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache natural_numberEquality hypothesis hypothesisEquality independent_functionElimination sqequalRule isect_memberEquality productElimination independent_isectElimination dependent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality voidElimination voidEquality

Latex:
\mforall{}[t1,t2,t3,t4:\mBbbR{}].
    ((((((r1  +  (t1  *  t2))  *  (t3  +  t4))  -  (r1  +  (t3  *  t4))  *  (t1  +  t2))
    *  (((r1  +  (t1  *  t3))  *  (t2  +  t4))  -  (r1  +  (t2  *  t4))  *  (t1  +  t3)))
    +  ((r(2)  *  ((t3  *  t4)  -  t1  *  t2))  *  r(2)  *  ((t2  *  t4)  -  t1  *  t3)))
    =  ((((r1  -  t1  *  t2)  *  (t3  +  t4))  -  (r1  -  t3  *  t4)  *  (t1  +  t2))
        *  (((r1  -  t1  *  t3)  *  (t2  +  t4))  -  (r1  -  t2  *  t4)  *  (t1  +  t3))))



Date html generated: 2017_10_05-AM-00_16_50
Last ObjectModification: 2017_06_17-AM-10_06_19

Theory : inner!product!spaces


Home Index