Nuprl Lemma : min_l_tree_wf
∀[L,T:Type].  ∀t:l_tree(L;T). ∀f:T ⟶ ℤ.  (min_l_tree(t;f) ∈ T?)
Proof
Definitions occuring in Statement : 
min_l_tree: min_l_tree(t;f)
, 
l_tree: l_tree(L;T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
min_l_tree: min_l_tree(t;f)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
so_apply: x[s1;s2;s3;s4;s5]
Lemmas referenced : 
l_tree_ind_wf_simple, 
top_wf, 
unit_wf2, 
l_tree_covariant, 
it_wf, 
min_w_unit_l_tree_wf, 
l_tree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
unionEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
inrEquality, 
inlEquality, 
functionEquality, 
intEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[L,T:Type].    \mforall{}t:l\_tree(L;T).  \mforall{}f:T  {}\mrightarrow{}  \mBbbZ{}.    (min\_l\_tree(t;f)  \mmember{}  T?)
Date html generated:
2018_05_22-PM-09_39_55
Last ObjectModification:
2015_12_28-PM-06_41_35
Theory : labeled!trees
Home
Index