Nuprl Lemma : fdl-0-not-1
∀[X:Type]. (¬(0 = 1 ∈ Point(free-dl(X))))
Proof
Definitions occuring in Statement : 
free-dl: free-dl(X)
, 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
fdl-is-1: fdl-is-1(x)
, 
bl-exists: (∃x∈L.P[x])_b
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
lattice-0: 0
, 
record-select: r.x
, 
free-dl: free-dl(X)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
nil: []
, 
it: ⋅
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
assert_of_ff, 
fdl-eq-1, 
equal_wf, 
not_wf, 
assert_wf, 
fdl-is-1_wf, 
lattice-0_wf, 
free-dl_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
bdd-distributive-lattice_wf, 
lattice-1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalRule, 
extract_by_obid, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
impliesFunctionality, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination, 
because_Cache, 
cumulativity, 
applyEquality, 
voidElimination, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
independent_isectElimination, 
setElimination, 
rename
Latex:
\mforall{}[X:Type].  (\mneg{}(0  =  1))
Date html generated:
2017_10_05-AM-00_33_10
Last ObjectModification:
2017_07_28-AM-09_13_41
Theory : lattices
Home
Index