Nuprl Lemma : fdl-0-not-1

[X:Type]. (0 1 ∈ Point(free-dl(X))))


Proof




Definitions occuring in Statement :  free-dl: free-dl(X) lattice-0: 0 lattice-1: 1 lattice-point: Point(l) uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False fdl-is-1: fdl-is-1(x) bl-exists: (∃x∈L.P[x])_b reduce: reduce(f;k;as) list_ind: list_ind lattice-0: 0 record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt nil: [] it: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  assert_of_ff fdl-eq-1 equal_wf not_wf assert_wf fdl-is-1_wf lattice-0_wf free-dl_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf bdd-distributive-lattice_wf lattice-1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalRule extract_by_obid hypothesis addLevel sqequalHypSubstitution impliesFunctionality isectElimination hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry productElimination independent_functionElimination because_Cache cumulativity applyEquality voidElimination instantiate lambdaEquality productEquality universeEquality independent_isectElimination setElimination rename

Latex:
\mforall{}[X:Type].  (\mneg{}(0  =  1))



Date html generated: 2017_10_05-AM-00_33_10
Last ObjectModification: 2017_07_28-AM-09_13_41

Theory : lattices


Home Index