Nuprl Lemma : fdl-eq-1
∀[X:Type]. ∀x:Point(free-dl(X)). (x = 1 ∈ Point(free-dl(X)) 
⇐⇒ ↑fdl-is-1(x))
Proof
Definitions occuring in Statement : 
fdl-is-1: fdl-is-1(x)
, 
free-dl: free-dl(X)
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
free-dl: free-dl(X)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
free-dl-type: free-dl-type(X)
, 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
lattice-1: 1
, 
cons: [a / b]
, 
fdl-is-1: fdl-is-1(x)
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exposed-it: exposed-it
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
assert: ↑b
, 
true: True
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
false: False
, 
not: ¬A
, 
dlattice-eq: dlattice-eq(X;as;bs)
, 
dlattice-order: as 
⇒ bs
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
select: L[n]
, 
l_exists: (∃x∈L. P[x])
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nil: []
, 
l_contains: A ⊆ B
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
Lemmas referenced : 
free-dl-type_wf, 
iff_wf, 
assert_wf, 
equal-wf-base, 
list_wf, 
dlattice-eq_wf, 
fdl-is-1_wf, 
member_wf, 
equal-wf-T-base, 
subtype_quotient, 
dlattice-eq-equiv, 
quotient-member-eq, 
cons_wf, 
nil_wf, 
bl-exists_wf, 
isaxiom_wf_list, 
l_member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bl-exists, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
l_exists_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
list-cases, 
l_contains_wf, 
product_subtype_list, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
non_neg_length, 
btrue_neq_bfalse, 
l_all_iff, 
l_contains_nil, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
pointwiseFunctionalityForEquality, 
because_Cache, 
pertypeElimination, 
productElimination, 
productEquality, 
independent_pairEquality, 
lambdaEquality, 
baseClosed, 
applyEquality, 
independent_isectElimination, 
axiomEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setElimination, 
rename, 
setEquality, 
unionElimination, 
equalityElimination, 
natural_numberEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
imageElimination, 
hypothesis_subsumption, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
addEquality
Latex:
\mforall{}[X:Type].  \mforall{}x:Point(free-dl(X)).  (x  =  1  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}fdl-is-1(x))
Date html generated:
2017_10_05-AM-00_33_08
Last ObjectModification:
2017_07_28-AM-09_13_39
Theory : lattices
Home
Index