Nuprl Lemma : fdl-eq-1

[X:Type]. ∀x:Point(free-dl(X)). (x 1 ∈ Point(free-dl(X)) ⇐⇒ ↑fdl-is-1(x))


Proof




Definitions occuring in Statement :  fdl-is-1: fdl-is-1(x) free-dl: free-dl(X) lattice-1: 1 lattice-point: Point(l) assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] lattice-point: Point(l) record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-dl-type: free-dl-type(X) quotient: x,y:A//B[x; y] all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q rev_implies:  Q implies:  Q and: P ∧ Q prop: lattice-1: 1 cons: [a b] fdl-is-1: fdl-is-1(x) cand: c∧ B subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] exposed-it: exposed-it bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) assert: b true: True exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb false: False not: ¬A dlattice-eq: dlattice-eq(X;as;bs) dlattice-order: as  bs l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T select: L[n] l_exists: (∃x∈L. P[x]) decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) nil: [] l_contains: A ⊆ B nat_plus: + ge: i ≥ 
Lemmas referenced :  free-dl-type_wf iff_wf assert_wf equal-wf-base list_wf dlattice-eq_wf fdl-is-1_wf member_wf equal-wf-T-base subtype_quotient dlattice-eq-equiv quotient-member-eq cons_wf nil_wf bl-exists_wf isaxiom_wf_list l_member_wf bool_wf eqtt_to_assert assert-bl-exists eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot l_exists_wf length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma list-cases l_contains_wf product_subtype_list add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma null_nil_lemma btrue_wf member-implies-null-eq-bfalse non_neg_length btrue_neq_bfalse l_all_iff l_contains_nil true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis universeEquality pointwiseFunctionalityForEquality because_Cache pertypeElimination productElimination productEquality independent_pairEquality lambdaEquality baseClosed applyEquality independent_isectElimination axiomEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination setElimination rename setEquality unionElimination equalityElimination natural_numberEquality dependent_pairFormation promote_hyp instantiate voidElimination isect_memberEquality voidEquality dependent_set_memberEquality independent_pairFormation imageMemberEquality int_eqEquality intEquality computeAll imageElimination hypothesis_subsumption applyLambdaEquality pointwiseFunctionality baseApply closedConclusion addEquality

Latex:
\mforall{}[X:Type].  \mforall{}x:Point(free-dl(X)).  (x  =  1  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}fdl-is-1(x))



Date html generated: 2017_10_05-AM-00_33_08
Last ObjectModification: 2017_07_28-AM-09_13_39

Theory : lattices


Home Index