Nuprl Lemma : type-lattice_wf

type-lattice{i:l}() ∈ bdd-lattice{i':l}


Proof




Definitions occuring in Statement :  type-lattice: type-lattice{i:l}() bdd-lattice: BoundedLattice member: t ∈ T
Definitions unfolded in proof :  type-lattice: type-lattice{i:l}() member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B e-type: EType prop: uimplies: supposing a and: P ∧ Q cand: c∧ B quotient: x,y:A//B[x; y] e-isect: e-isect(A;B) all: x:A. B[x] implies:  Q ext-eq: A ≡ B isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  guard: {T} bfalse: ff e-union: e-union(A;B) b-union: A ⋃ B tunion: x:A.B[x] pi2: snd(t) top: Top
Lemmas referenced :  mk-bounded-lattice_wf e-type_wf e-isect_wf e-union_wf subtype_quotient ext-eq_wf ext-eq-equiv top_wf quotient-member-eq isect2_wf isect2_decomp bool_wf istype-universe b-union_wf bfalse_wf ifthenelse_wf btrue_wf istype-void
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality_alt hypothesisEquality inhabitedIsType universeIsType because_Cache closedConclusion voidEquality applyEquality universeEquality cumulativity equalityTransitivity equalitySymmetry independent_isectElimination isect_memberFormation_alt pointwiseFunctionalityForEquality pertypeElimination promote_hyp productElimination dependent_functionElimination independent_functionElimination independent_pairFormation isect_memberEquality unionElimination equalityElimination productIsType equalityIstype sqequalBase isect_memberEquality_alt axiomEquality isectIsTypeImplies imageElimination imageMemberEquality dependent_pairEquality_alt baseClosed voidElimination

Latex:
type-lattice\{i:l\}()  \mmember{}  bdd-lattice\{i':l\}



Date html generated: 2019_10_31-AM-07_20_13
Last ObjectModification: 2018_12_13-PM-02_49_05

Theory : lattices


Home Index