Nuprl Lemma : type-lattice_wf
type-lattice{i:l}() ∈ bdd-lattice{i':l}
Proof
Definitions occuring in Statement : 
type-lattice: type-lattice{i:l}()
, 
bdd-lattice: BoundedLattice
, 
member: t ∈ T
Definitions unfolded in proof : 
type-lattice: type-lattice{i:l}()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
e-type: EType
, 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
, 
e-isect: e-isect(A;B)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
ext-eq: A ≡ B
, 
isect2: T1 ⋂ T2
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
guard: {T}
, 
bfalse: ff
, 
e-union: e-union(A;B)
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
top: Top
Lemmas referenced : 
mk-bounded-lattice_wf, 
e-type_wf, 
e-isect_wf, 
e-union_wf, 
subtype_quotient, 
ext-eq_wf, 
ext-eq-equiv, 
top_wf, 
quotient-member-eq, 
isect2_wf, 
isect2_decomp, 
bool_wf, 
istype-universe, 
b-union_wf, 
bfalse_wf, 
ifthenelse_wf, 
btrue_wf, 
istype-void
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality_alt, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
because_Cache, 
closedConclusion, 
voidEquality, 
applyEquality, 
universeEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
isect_memberFormation_alt, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
promote_hyp, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
productIsType, 
equalityIstype, 
sqequalBase, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
imageElimination, 
imageMemberEquality, 
dependent_pairEquality_alt, 
baseClosed, 
voidElimination
Latex:
type-lattice\{i:l\}()  \mmember{}  bdd-lattice\{i':l\}
Date html generated:
2019_10_31-AM-07_20_13
Last ObjectModification:
2018_12_13-PM-02_49_05
Theory : lattices
Home
Index