Nuprl Lemma : bfs-rm0_wf

[K:RngSig]. ∀[S:Type]. ∀[b:basic-formal-sum(K;S)]. ∀[eq:EqDecider(|K|)].  (bfs-rm0(K;eq;b) ∈ basic-formal-sum(K;S))


Proof




Definitions occuring in Statement :  bfs-rm0: bfs-rm0(K;eq;b) basic-formal-sum: basic-formal-sum(K;S) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] member: t ∈ T bfs-rm0: bfs-rm0(K;eq;b) so_lambda: λ2x.t[x] deq: EqDecider(T) top: Top so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  bag-filter_wf rng_car_wf bnot_wf pi1_wf_top istype-void rng_zero_wf subtype_rel_bag assert_wf istype-assert deq_wf bag_wf istype-universe rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis lambdaEquality_alt applyEquality setElimination rename productElimination independent_pairEquality isect_memberEquality_alt voidElimination productIsType universeIsType setEquality independent_isectElimination setIsType because_Cache axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].  \mforall{}[b:basic-formal-sum(K;S)].  \mforall{}[eq:EqDecider(|K|)].
    (bfs-rm0(K;eq;b)  \mmember{}  basic-formal-sum(K;S))



Date html generated: 2019_10_31-AM-06_28_41
Last ObjectModification: 2019_08_27-PM-03_10_12

Theory : linear!algebra


Home Index