Nuprl Lemma : bfs-rm0_wf
∀[K:RngSig]. ∀[S:Type]. ∀[b:basic-formal-sum(K;S)]. ∀[eq:EqDecider(|K|)].  (bfs-rm0(K;eq;b) ∈ basic-formal-sum(K;S))
Proof
Definitions occuring in Statement : 
bfs-rm0: bfs-rm0(K;eq;b)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
basic-formal-sum: basic-formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bfs-rm0: bfs-rm0(K;eq;b)
, 
so_lambda: λ2x.t[x]
, 
deq: EqDecider(T)
, 
top: Top
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
bag-filter_wf, 
rng_car_wf, 
bnot_wf, 
pi1_wf_top, 
istype-void, 
rng_zero_wf, 
subtype_rel_bag, 
assert_wf, 
istype-assert, 
deq_wf, 
bag_wf, 
istype-universe, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
applyEquality, 
setElimination, 
rename, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
universeIsType, 
setEquality, 
independent_isectElimination, 
setIsType, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].  \mforall{}[b:basic-formal-sum(K;S)].  \mforall{}[eq:EqDecider(|K|)].
    (bfs-rm0(K;eq;b)  \mmember{}  basic-formal-sum(K;S))
Date html generated:
2019_10_31-AM-06_28_41
Last ObjectModification:
2019_08_27-PM-03_10_12
Theory : linear!algebra
Home
Index