Nuprl Lemma : eq-0-in-relative-free-vs

[K:CRng]. ∀[S,T:Type].
  ∀[x:Point(free-vs(K;S))]. 0 ∈ Point(relative-free-vs(K;S;T)) supposing ↓fs-in-subtype(K;S;T;x) 
  supposing strong-subtype(T;S)


Proof




Definitions occuring in Statement :  relative-free-vs: relative-free-vs(K;S;T) free-vs: free-vs(K;S) fs-in-subtype: fs-in-subtype(K;S;T;f) vs-0: 0 vs-point: Point(vs) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] squash: T universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  relative-free-vs: relative-free-vs(K;S;T) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T so_lambda: λ2x.t[x] crng: CRng rng: Rng subtype_rel: A ⊆B vs-point: Point(vs) record-select: r.x free-vs: free-vs(K;S) mk-vs: mk-vs record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt formal-sum: formal-sum(K;S) quotient: x,y:A//B[x; y] so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  eq-0-in-vs-quotient free-vs_wf fs-in-subtype_wf subtype_rel_self formal-sum_wf fs-in-subtype-subspace squash_wf vs-point_wf strong-subtype_wf istype-universe crng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut sqequalHypSubstitution imageElimination extract_by_obid isectElimination thin hypothesisEquality hypothesis lambdaEquality_alt setElimination rename independent_isectElimination applyEquality because_Cache inhabitedIsType dependent_functionElimination imageMemberEquality baseClosed universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[K:CRng].  \mforall{}[S,T:Type].
    \mforall{}[x:Point(free-vs(K;S))].  x  =  0  supposing  \mdownarrow{}fs-in-subtype(K;S;T;x)  supposing  strong-subtype(T;S)



Date html generated: 2019_10_31-AM-06_30_34
Last ObjectModification: 2019_08_20-PM-06_01_49

Theory : linear!algebra


Home Index