Nuprl Lemma : eq-0-in-vs-quotient
∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].
  ∀z:Point(vs). z = 0 ∈ Point(vs//z.P[z]) supposing ↓P[z] supposing vs-subspace(K;vs;z.P[z])
Proof
Definitions occuring in Statement : 
vs-quotient: vs//z.P[z]
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vs-0: 0
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
vs-quotient: vs//z.P[z]
, 
vs-0: 0
, 
vs-point: Point(vs)
, 
mk-vs: mk-vs, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
eq-mod-subspace: x = y mod (z.P[z])
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rec_select_update_lemma, 
istype-void, 
quotient-member-eq, 
vs-point_wf, 
eq-mod-subspace_wf, 
eq-mod-subspace-equiv, 
vs-0_wf, 
squash_wf, 
vs-subspace_wf, 
vector-space_wf, 
crng_wf, 
equal_wf, 
vs-add-comm-nu, 
vs-neg_wf, 
iff_weakening_equal, 
vs-add_wf, 
vs-neg-zero, 
vs-zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaEquality_alt, 
because_Cache, 
applyEquality, 
inhabitedIsType, 
independent_isectElimination, 
independent_functionElimination, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
functionIsTypeImplies, 
functionIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}z:Point(vs).  z  =  0  supposing  \mdownarrow{}P[z]  supposing  vs-subspace(K;vs;z.P[z])
Date html generated:
2019_10_31-AM-06_27_53
Last ObjectModification:
2019_08_20-PM-05_57_57
Theory : linear!algebra
Home
Index