Nuprl Lemma : eq-0-in-vs-quotient

[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].
  ∀z:Point(vs). 0 ∈ Point(vs//z.P[z]) supposing ↓P[z] supposing vs-subspace(K;vs;z.P[z])


Proof




Definitions occuring in Statement :  vs-quotient: vs//z.P[z] vs-subspace: vs-subspace(K;vs;x.P[x]) vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] squash: T function: x:A ⟶ B[x] equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] squash: T vs-quotient: vs//z.P[z] vs-0: 0 vs-point: Point(vs) mk-vs: mk-vs top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt crng: CRng rng: Rng so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] implies:  Q prop: eq-mod-subspace: mod (z.P[z]) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  rec_select_update_lemma istype-void quotient-member-eq vs-point_wf eq-mod-subspace_wf eq-mod-subspace-equiv vs-0_wf squash_wf vs-subspace_wf vector-space_wf crng_wf equal_wf vs-add-comm-nu vs-neg_wf iff_weakening_equal vs-add_wf vs-neg-zero vs-zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution imageElimination sqequalRule extract_by_obid dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis isectElimination setElimination rename hypothesisEquality lambdaEquality_alt because_Cache applyEquality inhabitedIsType independent_isectElimination independent_functionElimination universeIsType axiomEquality isectIsTypeImplies functionIsTypeImplies functionIsType universeEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}z:Point(vs).  z  =  0  supposing  \mdownarrow{}P[z]  supposing  vs-subspace(K;vs;z.P[z])



Date html generated: 2019_10_31-AM-06_27_53
Last ObjectModification: 2019_08_20-PM-05_57_57

Theory : linear!algebra


Home Index