Nuprl Lemma : free-vs-dim-1-ext
∀S:Type. (S ⇒ (∀K:CRng. free-vs(K;S) ≅ one-dim-vs(K) supposing ∀x,y:S.  (x = y ∈ S)))
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S), 
vs-iso: A ≅ B, 
one-dim-vs: one-dim-vs(K), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
member: t ∈ T, 
one-dim-vs: one-dim-vs(K), 
mk-vs: mk-vs, 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
btrue: tt, 
it: ⋅, 
bfalse: ff, 
infix_ap: x f y, 
rng_car: |r|, 
pi1: fst(t), 
vs-lift: vs-lift(vs;f;fs), 
vs-bag-add: Σ{f[b] | b ∈ bs}, 
vs-0: 0, 
record-select: r.x, 
vs-add: x + y, 
vs-mul: a * x, 
free-vs: free-vs(K;S), 
formal-sum-mul: k * x, 
bag-map: bag-map(f;bs), 
map: map(f;as), 
list_ind: list_ind, 
cons: [a / b], 
nil: [], 
bottom: ⊥, 
formal-sum: formal-sum(K;S), 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
basic-formal-sum: basic-formal-sum(K;S), 
bag: bag(T), 
list: T List, 
colist: colist(T), 
corec: corec(T.F[T]), 
nat: ℕ, 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
less_than': less_than'(a;b), 
true: True, 
false: False, 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
top: Top, 
subtract: n - m, 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
pi2: snd(t), 
has-value: (a)↓, 
colength: colength(L), 
permutation: permutation(T;L1;L2), 
exists: ∃x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
length: ||as||, 
inject: Inj(A;B;f), 
all: ∀x:A. B[x], 
permute_list: (L o f), 
mklist: mklist(n;f), 
append: as @ bs, 
select: L[n], 
bfs-equiv: bfs-equiv(K;S;fs1;fs2), 
least-equiv: least-equiv(A;R), 
transitive-reflexive-closure: R^*, 
or: P ∨ Q, 
transitive-closure: TC(R), 
bfs-reduce: bfs-reduce(K;S;as;bs), 
bag-append: as + bs, 
zero-bfs: 0 * ss, 
rel_path: rel_path(A;L;x;y), 
empty-bag: {}, 
formal-sum-add: x + y, 
free-vs-inc: <s>, 
single-bag: {x}, 
rng_plus: +r, 
rng_times: *, 
free-vs-dim-1, 
free-vs-unique, 
vs-iso_inversion, 
unique-one-dim-vs-map, 
free-vs-property
Lemmas referenced : 
free-vs-dim-1, 
free-vs-unique, 
vs-iso_inversion, 
unique-one-dim-vs-map, 
free-vs-property
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}S:Type.  (S  {}\mRightarrow{}  (\mforall{}K:CRng.  free-vs(K;S)  \mcong{}  one-dim-vs(K)  supposing  \mforall{}x,y:S.    (x  =  y)))
Date html generated:
2019_10_31-AM-06_30_49
Last ObjectModification:
2019_08_02-PM-04_37_53
Theory : linear!algebra
Home
Index