Nuprl Lemma : relative-free-vs_wf
∀[K:CRng]. ∀[S,T:Type].  relative-free-vs(K;S;T) ∈ VectorSpace(K) supposing strong-subtype(T;S)
Proof
Definitions occuring in Statement : 
relative-free-vs: relative-free-vs(K;S;T)
, 
vector-space: VectorSpace(K)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
relative-free-vs: relative-free-vs(K;S;T)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
vs-point: Point(vs)
, 
record-select: r.x
, 
free-vs: free-vs(K;S)
, 
mk-vs: mk-vs, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
formal-sum: formal-sum(K;S)
, 
quotient: x,y:A//B[x; y]
, 
crng: CRng
, 
rng: Rng
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
vs-quotient_wf, 
free-vs_wf, 
fs-in-subtype_wf, 
subtype_rel_self, 
formal-sum_wf, 
vs-point_wf, 
fs-in-subtype-subspace, 
strong-subtype_wf, 
istype-universe, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaEquality_alt, 
independent_isectElimination, 
applyEquality, 
setElimination, 
rename, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[K:CRng].  \mforall{}[S,T:Type].    relative-free-vs(K;S;T)  \mmember{}  VectorSpace(K)  supposing  strong-subtype(T;S)
Date html generated:
2019_10_31-AM-06_30_28
Last ObjectModification:
2019_08_20-AM-10_33_44
Theory : linear!algebra
Home
Index