Nuprl Lemma : relative-vs_wf
∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[A,B:Point(vs) ⟶ ℙ].
  a.A[a]//b.B[b] ∈ VectorSpace(K) 
  supposing vs-subspace(K;vs;a.A[a]) ∧ vs-subspace(K;vs;b.B[b]) ∧ (∀v:Point(vs). (B[v] 
⇒ A[v]))
Proof
Definitions occuring in Statement : 
relative-vs: v.A[v]//z.B[z]
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
relative-vs: v.A[v]//z.B[z]
, 
and: P ∧ Q
, 
crng: CRng
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
rng: Rng
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sub-vs: (v:vs | P[v])
, 
vs-0: 0
, 
vs-mul: a * x
, 
vs-add: x + y
, 
mk-vs: mk-vs, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
prop: ℙ
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
guard: {T}
Lemmas referenced : 
vs-quotient_wf, 
sub-vs_wf, 
sub-vs-point-subtype, 
vs-point_wf, 
implies-vs-subspace, 
rec_select_update_lemma, 
istype-void, 
rng_car_wf, 
vs-subspace_wf, 
subtype_rel_self, 
vector-space_wf, 
crng_wf, 
vs-add_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality_alt, 
applyEquality, 
independent_isectElimination, 
universeIsType, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
lambdaFormation_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
functionIsType, 
instantiate, 
universeEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[A,B:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    a.A[a]//b.B[b]  \mmember{}  VectorSpace(K) 
    supposing  vs-subspace(K;vs;a.A[a])  \mwedge{}  vs-subspace(K;vs;b.B[b])  \mwedge{}  (\mforall{}v:Point(vs).  (B[v]  {}\mRightarrow{}  A[v]))
Date html generated:
2019_10_31-AM-06_28_11
Last ObjectModification:
2019_08_12-PM-01_27_47
Theory : linear!algebra
Home
Index