Nuprl Lemma : relative-vs_wf

[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[A,B:Point(vs) ⟶ ℙ].
  a.A[a]//b.B[b] ∈ VectorSpace(K) 
  supposing vs-subspace(K;vs;a.A[a]) ∧ vs-subspace(K;vs;b.B[b]) ∧ (∀v:Point(vs). (B[v]  A[v]))


Proof




Definitions occuring in Statement :  relative-vs: v.A[v]//z.B[z] vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a relative-vs: v.A[v]//z.B[z] and: P ∧ Q crng: CRng so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B rng: Rng all: x:A. B[x] implies:  Q sub-vs: (v:vs P[v]) vs-0: 0 vs-mul: x vs-add: y mk-vs: mk-vs top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt prop: vs-subspace: vs-subspace(K;vs;x.P[x]) guard: {T}
Lemmas referenced :  vs-quotient_wf sub-vs_wf sub-vs-point-subtype vs-point_wf implies-vs-subspace rec_select_update_lemma istype-void rng_car_wf vs-subspace_wf subtype_rel_self vector-space_wf crng_wf vs-add_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality setElimination rename because_Cache hypothesis lambdaEquality_alt applyEquality independent_isectElimination universeIsType dependent_functionElimination independent_functionElimination isect_memberEquality_alt voidElimination lambdaFormation_alt axiomEquality equalityTransitivity equalitySymmetry productIsType functionIsType instantiate universeEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[A,B:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    a.A[a]//b.B[b]  \mmember{}  VectorSpace(K) 
    supposing  vs-subspace(K;vs;a.A[a])  \mwedge{}  vs-subspace(K;vs;b.B[b])  \mwedge{}  (\mforall{}v:Point(vs).  (B[v]  {}\mRightarrow{}  A[v]))



Date html generated: 2019_10_31-AM-06_28_11
Last ObjectModification: 2019_08_12-PM-01_27_47

Theory : linear!algebra


Home Index