Nuprl Lemma : sub-vs_wf
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  (v:vs | P[v]) ∈ VectorSpace(K) supposing vs-subspace(K;vs;x.P[x])
Proof
Definitions occuring in Statement : 
sub-vs: (v:vs | P[v])
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
rng: Rng
Definitions unfolded in proof : 
infix_ap: x f y
, 
label: ...$L... t
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
rng: Rng
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
sub-vs: (v:vs | P[v])
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
Lemmas referenced : 
rng_plus_wf, 
rng_wf, 
vector-space_wf, 
all_wf, 
vs-mul-add, 
rng_times_wf, 
infix_ap_wf, 
vs-mul-mul, 
vs-mul-zero, 
vs-mul-one, 
vs-mul-linear, 
trivial-equal, 
vs-add-comm, 
set_wf, 
iff_weakening_equal, 
vs-mon_assoc, 
equal_wf, 
rng_car_wf, 
vs-mul_wf, 
vs-add_wf, 
vs-point_wf, 
vs-0_wf, 
mk-vs_wf
Rules used in proof : 
universeEquality, 
cumulativity, 
isect_memberEquality, 
functionEquality, 
productEquality, 
axiomEquality, 
applyLambdaEquality, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
lambdaEquality, 
functionExtensionality, 
rename, 
setElimination, 
dependent_set_memberEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
setEquality, 
because_Cache, 
isectElimination, 
extract_by_obid, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    (v:vs  |  P[v])  \mmember{}  VectorSpace(K)  supposing  vs-subspace(K;vs;x.P[x])
Date html generated:
2018_05_22-PM-09_42_28
Last ObjectModification:
2018_01_09-PM-01_03_23
Theory : linear!algebra
Home
Index