Nuprl Lemma : sub-vs_wf

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  (v:vs P[v]) ∈ VectorSpace(K) supposing vs-subspace(K;vs;x.P[x])


Proof




Definitions occuring in Statement :  sub-vs: (v:vs P[v]) vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] rng: Rng
Definitions unfolded in proof :  infix_ap: y label: ...$L... t so_lambda: λ2x.t[x] prop: rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True squash: T cand: c∧ B so_apply: x[s1;s2] implies:  Q all: x:A. B[x] so_lambda: λ2y.t[x; y] rng: Rng subtype_rel: A ⊆B so_apply: x[s] and: P ∧ Q sub-vs: (v:vs P[v]) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] vs-subspace: vs-subspace(K;vs;x.P[x])
Lemmas referenced :  rng_plus_wf rng_wf vector-space_wf all_wf vs-mul-add rng_times_wf infix_ap_wf vs-mul-mul vs-mul-zero vs-mul-one vs-mul-linear trivial-equal vs-add-comm set_wf iff_weakening_equal vs-mon_assoc equal_wf rng_car_wf vs-mul_wf vs-add_wf vs-point_wf vs-0_wf mk-vs_wf
Rules used in proof :  universeEquality cumulativity isect_memberEquality functionEquality productEquality axiomEquality applyLambdaEquality independent_pairFormation equalitySymmetry equalityTransitivity baseClosed imageMemberEquality natural_numberEquality imageElimination independent_isectElimination independent_functionElimination dependent_functionElimination lambdaFormation lambdaEquality functionExtensionality rename setElimination dependent_set_memberEquality hypothesis hypothesisEquality applyEquality setEquality because_Cache isectElimination extract_by_obid thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    (v:vs  |  P[v])  \mmember{}  VectorSpace(K)  supposing  vs-subspace(K;vs;x.P[x])



Date html generated: 2018_05_22-PM-09_42_28
Last ObjectModification: 2018_01_09-PM-01_03_23

Theory : linear!algebra


Home Index