Nuprl Lemma : sum-in-vs-neg
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[n,m:ℤ]. ∀[f:{n..m + 1-} ⟶ Point(vs)].
  (Σ{-(f[i]) | n≤i≤m} = -(Σ{f[i] | n≤i≤m}) ∈ Point(vs))
Proof
Definitions occuring in Statement : 
sum-in-vs: Σ{f[i] | n≤i≤m}, 
vs-neg: -(x), 
vector-space: VectorSpace(K), 
vs-point: Point(vs), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
vs-neg: -(x), 
rng: Rng, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
int_seg_wf, 
vs-point_wf, 
istype-int, 
vector-space_wf, 
rng_wf, 
sum-in-vs_wf, 
vs-mul_wf, 
rng_minus_wf, 
rng_one_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
sum-in-vs-mul, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
functionIsType, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
setElimination, 
rename, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination, 
because_Cache, 
lambdaEquality_alt, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].
    (\mSigma{}\{-(f[i])  |  n\mleq{}i\mleq{}m\}  =  -(\mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}))
Date html generated:
2019_10_31-AM-06_26_11
Last ObjectModification:
2019_08_08-PM-02_29_08
Theory : linear!algebra
Home
Index