Nuprl Lemma : vs-double-bag-add
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[T:Type]. ∀[A:T ⟶ Type]. ∀[f:x:T ⟶ bag(A[x])]. ∀[h:x:T ⟶ A[x] ⟶ Point(vs)].
∀[b:bag(T)].
  (Σ{Σ{h[x;y] | y ∈ f[x]} | x ∈ b} = Σ{h[fst(p);snd(p)] | p ∈ ⋃x∈b.bag-map(λy.<x, y>f[x])} ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
rng: Rng
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
monoid_p: IsMonoid(T;op;id)
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
ident: Ident(T;op;id)
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
comm: Comm(T;op)
, 
so_apply: x[s]
Lemmas referenced : 
bag-double-summation1, 
vs-point_wf, 
vs-add_wf, 
vs-0_wf, 
vs-mon_assoc, 
vs-mon_ident, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
vs-add-comm-nu, 
subtype_rel_self, 
iff_weakening_equal, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
universeIsType, 
independent_isectElimination, 
independent_pairFormation, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
productElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
independent_pairEquality, 
functionIsType
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  Type].  \mforall{}[f:x:T  {}\mrightarrow{}  bag(A[x])].  \mforall{}[h:x:T
                                                                                                                                                                            {}\mrightarrow{}  A[x]
                                                                                                                                                                            {}\mrightarrow{}  Point(vs)].
\mforall{}[b:bag(T)].
    (\mSigma{}\{\mSigma{}\{h[x;y]  |  y  \mmember{}  f[x]\}  |  x  \mmember{}  b\}  =  \mSigma{}\{h[fst(p);snd(p)]  |  p  \mmember{}  \mcup{}x\mmember{}b.bag-map(\mlambda{}y.<x,  y>f[x])\})
Date html generated:
2019_10_31-AM-06_25_55
Last ObjectModification:
2019_08_09-PM-01_29_08
Theory : linear!algebra
Home
Index