Nuprl Lemma : vs-lift_wf-vs-map
∀[S:Type]. ∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].  (λx.vs-lift(vs;f;x) ∈ free-vs(K;S) ⟶ vs)
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S)
, 
vs-lift: vs-lift(vs;f;fs)
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
vs-map: A ⟶ B
, 
subtype_rel: A ⊆r B
, 
vs-point: Point(vs)
, 
record-select: r.x
, 
free-vs: free-vs(K;S)
, 
mk-vs: mk-vs, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
formal-sum: formal-sum(K;S)
, 
quotient: x,y:A//B[x; y]
, 
crng: CRng
, 
rng: Rng
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
vs-lift_wf2, 
subtype_rel_self, 
formal-sum_wf, 
vs-point_wf, 
free-vs_wf, 
vs-lift-add, 
vs-lift-mul, 
rng_car_wf, 
vs-add_wf, 
vs-mul_wf, 
vector-space_wf, 
crng_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
universeIsType, 
lambdaFormation_alt, 
inhabitedIsType, 
independent_pairFormation, 
productIsType, 
functionIsType, 
equalityIstype, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
dependent_functionElimination, 
instantiate, 
universeEquality
Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].
    (\mlambda{}x.vs-lift(vs;f;x)  \mmember{}  free-vs(K;S)  {}\mrightarrow{}  vs)
Date html generated:
2019_10_31-AM-06_29_28
Last ObjectModification:
2019_07_31-PM-04_16_05
Theory : linear!algebra
Home
Index