Nuprl Lemma : vs-lift-mul
∀[S:Type]. ∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)]. ∀[a:|K|]. ∀[u:Point(free-vs(K;S))].
  (vs-lift(vs;f;a * u) = a * vs-lift(vs;f;u) ∈ Point(vs))
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S)
, 
vs-lift: vs-lift(vs;f;fs)
, 
vs-mul: a * x
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
prop: ℙ
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
true: True
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
, 
rng: Rng
, 
crng: CRng
, 
formal-sum: formal-sum(K;S)
, 
vs-mul: a * x
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
top: Top
, 
all: ∀x:A. B[x]
, 
mk-vs: mk-vs, 
vs-point: Point(vs)
, 
free-vs: free-vs(K;S)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
crng_wf, 
vector-space_wf, 
rng_car_wf, 
free-vs_wf, 
bfs-equiv_wf, 
basic-formal-sum_wf, 
equal-wf-base, 
vs-mul_wf, 
iff_weakening_equal, 
vs-lift-formal-sum-mul, 
formal-sum_wf, 
subtype_rel_self, 
formal-sum-mul_wf, 
vs-lift_wf2, 
equal_wf, 
vs-point_wf, 
rec_select_update_lemma
Rules used in proof : 
universeEquality, 
functionEquality, 
axiomEquality, 
productEquality, 
applyLambdaEquality, 
hyp_replacement, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
cumulativity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
productElimination, 
pertypeElimination, 
hypothesisEquality, 
because_Cache, 
rename, 
setElimination, 
isectElimination, 
pointwiseFunctionalityForEquality, 
sqequalRule, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[a:|K|].  \mforall{}[u:Point(free-vs(K;S))].
    (vs-lift(vs;f;a  *  u)  =  a  *  vs-lift(vs;f;u))
Date html generated:
2018_05_22-PM-09_46_25
Last ObjectModification:
2018_01_09-PM-00_30_11
Theory : linear!algebra
Home
Index