Nuprl Lemma : vs-lift-mul

[S:Type]. ∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)]. ∀[a:|K|]. ∀[u:Point(free-vs(K;S))].
  (vs-lift(vs;f;a u) vs-lift(vs;f;u) ∈ Point(vs))


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) vs-lift: vs-lift(vs;f;fs) vs-mul: x vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  prop: implies:  Q rev_implies:  Q iff: ⇐⇒ Q uimplies: supposing a true: True guard: {T} subtype_rel: A ⊆B squash: T and: P ∧ Q quotient: x,y:A//B[x; y] rng: Rng crng: CRng formal-sum: formal-sum(K;S) vs-mul: x btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top all: x:A. B[x] mk-vs: mk-vs vs-point: Point(vs) free-vs: free-vs(K;S) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  crng_wf vector-space_wf rng_car_wf free-vs_wf bfs-equiv_wf basic-formal-sum_wf equal-wf-base vs-mul_wf iff_weakening_equal vs-lift-formal-sum-mul formal-sum_wf subtype_rel_self formal-sum-mul_wf vs-lift_wf2 equal_wf vs-point_wf rec_select_update_lemma
Rules used in proof :  universeEquality functionEquality axiomEquality productEquality applyLambdaEquality hyp_replacement independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality equalitySymmetry equalityTransitivity cumulativity imageElimination lambdaEquality applyEquality productElimination pertypeElimination hypothesisEquality because_Cache rename setElimination isectElimination pointwiseFunctionalityForEquality sqequalRule hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination extract_by_obid sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[a:|K|].  \mforall{}[u:Point(free-vs(K;S))].
    (vs-lift(vs;f;a  *  u)  =  a  *  vs-lift(vs;f;u))



Date html generated: 2018_05_22-PM-09_46_25
Last ObjectModification: 2018_01_09-PM-00_30_11

Theory : linear!algebra


Home Index