Nuprl Lemma : continuous-composition

I:Interval
  (iproper(I)
   (∀J:Interval. ∀f:{x:ℝx ∈ I}  ⟶ {y:ℝy ∈ J} . ∀g:J ⟶ℝ.
        (f[x] continuous for x ∈  g[x] continuous for x ∈  g[f[x]] continuous for x ∈ I)))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B rfun: I ⟶ℝ uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a label: ...$L... t guard: {T}
Lemmas referenced :  continuous-implies-functional subtype_rel_dep_function real_wf i-member_wf set_wf function-is-continuous req_wf continuous_wf rfun_wf interval_wf iproper_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality sqequalRule isectElimination because_Cache lambdaEquality setEquality hypothesis independent_isectElimination setElimination rename independent_functionElimination functionExtensionality dependent_set_memberEquality functionEquality

Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}J:Interval.  \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \{y:\mBbbR{}|  y  \mmember{}  J\}  .  \mforall{}g:J  {}\mrightarrow{}\mBbbR{}.
                (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  J  {}\mRightarrow{}  g[f[x]]  continuous  for  x  \mmember{}  I)))



Date html generated: 2016_10_26-AM-10_00_33
Last ObjectModification: 2016_09_12-PM-01_38_06

Theory : reals


Home Index