Nuprl Lemma : continuous-composition
∀I:Interval
  (iproper(I)
  
⇒ (∀J:Interval. ∀f:{x:ℝ| x ∈ I}  ⟶ {y:ℝ| y ∈ J} . ∀g:J ⟶ℝ.
        (f[x] continuous for x ∈ I 
⇒ g[x] continuous for x ∈ J 
⇒ g[f[x]] continuous for x ∈ I)))
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
rfun: I ⟶ℝ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
label: ...$L... t
, 
guard: {T}
Lemmas referenced : 
continuous-implies-functional, 
subtype_rel_dep_function, 
real_wf, 
i-member_wf, 
set_wf, 
function-is-continuous, 
req_wf, 
continuous_wf, 
rfun_wf, 
interval_wf, 
iproper_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
isectElimination, 
because_Cache, 
lambdaEquality, 
setEquality, 
hypothesis, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
functionExtensionality, 
dependent_set_memberEquality, 
functionEquality
Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}J:Interval.  \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \{y:\mBbbR{}|  y  \mmember{}  J\}  .  \mforall{}g:J  {}\mrightarrow{}\mBbbR{}.
                (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  J  {}\mRightarrow{}  g[f[x]]  continuous  for  x  \mmember{}  I)))
Date html generated:
2016_10_26-AM-10_00_33
Last ObjectModification:
2016_09_12-PM-01_38_06
Theory : reals
Home
Index