Nuprl Lemma : homeomorphic_weakening
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].  (X ≡ Y ⇒ (dX = dY ∈ metric(X)) ⇒ homeomorphic(X;dX;Y;dY))
Proof
Definitions occuring in Statement : 
homeomorphic: homeomorphic(X;dX;Y;dY), 
metric: metric(X), 
ext-eq: A ≡ B, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
mfun: FUN(X ⟶ Y), 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
is-mfun: f:FUN(X;Y), 
all: ∀x:A. B[x], 
so_apply: x[s], 
squash: ↓T, 
prop: ℙ, 
true: True, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
homeomorphic: homeomorphic(X;dX;Y;dY), 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
meq: x ≡ y, 
metric: metric(X)
Lemmas referenced : 
subtype_rel_weakening, 
meq_wf, 
squash_wf, 
true_wf, 
metric_wf, 
subtype_rel_self, 
iff_weakening_equal, 
is-mfun_wf, 
ext-eq_inversion, 
metric-on-subtype, 
ext-eq_wf, 
istype-universe, 
meq-same, 
req_witness, 
int-to-real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
independent_isectElimination, 
sqequalRule, 
universeIsType, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
independent_functionElimination, 
universeEquality, 
dependent_pairFormation_alt, 
productIsType, 
functionIsType, 
setElimination, 
rename, 
equalityIstype, 
independent_pairFormation
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].    (X  \mequiv{}  Y  {}\mRightarrow{}  (dX  =  dY)  {}\mRightarrow{}  homeomorphic(X;dX;Y;dY))
 Date html generated: 
2019_10_30-AM-06_23_34
 Last ObjectModification: 
2019_10_02-AM-10_30_59
Theory : reals
Home
Index