Nuprl Lemma : homeomorphic_weakening

[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].  (X ≡  (dX dY ∈ metric(X))  homeomorphic(X;dX;Y;dY))


Proof




Definitions occuring in Statement :  homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) ext-eq: A ≡ B uall: [x:A]. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T mfun: FUN(X ⟶ Y) subtype_rel: A ⊆B guard: {T} uimplies: supposing a is-mfun: f:FUN(X;Y) all: x:A. B[x] so_apply: x[s] squash: T prop: true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q homeomorphic: homeomorphic(X;dX;Y;dY) exists: x:A. B[x] cand: c∧ B meq: x ≡ y metric: metric(X)
Lemmas referenced :  subtype_rel_weakening meq_wf squash_wf true_wf metric_wf subtype_rel_self iff_weakening_equal is-mfun_wf ext-eq_inversion metric-on-subtype ext-eq_wf istype-universe meq-same req_witness int-to-real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut dependent_set_memberEquality_alt lambdaEquality_alt hypothesisEquality applyEquality hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin independent_isectElimination sqequalRule universeIsType imageElimination equalityTransitivity equalitySymmetry inhabitedIsType because_Cache natural_numberEquality imageMemberEquality baseClosed instantiate productElimination independent_functionElimination universeEquality dependent_pairFormation_alt productIsType functionIsType setElimination rename equalityIstype independent_pairFormation

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].    (X  \mequiv{}  Y  {}\mRightarrow{}  (dX  =  dY)  {}\mRightarrow{}  homeomorphic(X;dX;Y;dY))



Date html generated: 2019_10_30-AM-06_23_34
Last ObjectModification: 2019_10_02-AM-10_30_59

Theory : reals


Home Index