Nuprl Lemma : i-witness-property

I:Interval. ∀r:ℝ. ∀p:r ∈ I.  (r ∈ i-approx(I;i-witness(I;r;p)))


Proof




Definitions occuring in Statement :  i-witness: i-witness(I;r;p) i-approx: i-approx(I;n) i-member: r ∈ I interval: Interval real: all: x:A. B[x]
Definitions unfolded in proof :  pi1: fst(t) uimplies: supposing a exists: x:A. B[x] so_apply: x[s] prop: implies:  Q so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x] i-witness: i-witness(I;r;p)
Lemmas referenced :  equal_wf subtype_rel_function i-approx_wf nat_plus_wf exists_wf i-member_wf real_wf all_wf interval_wf subtype_rel_self i-member-witness
Rules used in proof :  independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity productElimination independent_isectElimination because_Cache hypothesisEquality lambdaEquality functionEquality isectElimination sqequalHypSubstitution introduction hypothesis extract_by_obid instantiate thin applyEquality cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}I:Interval.  \mforall{}r:\mBbbR{}.  \mforall{}p:r  \mmember{}  I.    (r  \mmember{}  i-approx(I;i-witness(I;r;p)))



Date html generated: 2018_05_22-PM-02_05_25
Last ObjectModification: 2018_05_21-AM-00_18_12

Theory : reals


Home Index