Nuprl Lemma : inf-unique
∀[A:Set(ℝ)]. ∀[b,c:ℝ].  (inf(A) = b ⇒ inf(A) = c ⇒ (b = c))
Proof
Definitions occuring in Statement : 
inf: inf(A) = b, 
rset: Set(ℝ), 
req: x = y, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
all: ∀x:A. B[x], 
guard: {T}, 
inf: inf(A) = b, 
lower-bound: lower-bound(A;b)
Lemmas referenced : 
rleq_antisymmetry, 
inf_wf, 
req_witness, 
real_wf, 
rset_wf, 
rleq_inf, 
rset-member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
universeIsType, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies
Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[b,c:\mBbbR{}].    (inf(A)  =  b  {}\mRightarrow{}  inf(A)  =  c  {}\mRightarrow{}  (b  =  c))
 Date html generated: 
2019_10_29-AM-10_40_50
 Last ObjectModification: 
2019_04_17-PM-04_03_52
Theory : reals
Home
Index