Nuprl Lemma : inf-unique

[A:Set(ℝ)]. ∀[b,c:ℝ].  (inf(A)  inf(A)  (b c))


Proof




Definitions occuring in Statement :  inf: inf(A) b rset: Set(ℝ) req: y real: uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q uimplies: supposing a prop: iff: ⇐⇒ Q rev_implies:  Q all: x:A. B[x] guard: {T} inf: inf(A) b lower-bound: lower-bound(A;b)
Lemmas referenced :  rleq_antisymmetry inf_wf req_witness real_wf rset_wf rleq_inf rset-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis universeIsType sqequalRule lambdaEquality_alt dependent_functionElimination independent_functionElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt because_Cache isectIsTypeImplies

Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[b,c:\mBbbR{}].    (inf(A)  =  b  {}\mRightarrow{}  inf(A)  =  c  {}\mRightarrow{}  (b  =  c))



Date html generated: 2019_10_29-AM-10_40_50
Last ObjectModification: 2019_04_17-PM-04_03_52

Theory : reals


Home Index