Nuprl Lemma : rleq_inf

[A:Set(ℝ)]. ∀[b,c:ℝ].  (inf(A)  (c ≤ ⇐⇒ ∀x:ℝ((x ∈ A)  (c ≤ x))))


Proof




Definitions occuring in Statement :  inf: inf(A) b rset-member: x ∈ A rset: Set(ℝ) rleq: x ≤ y real: uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q all: x:A. B[x] inf: inf(A) b prop: rev_implies:  Q rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B uimplies: supposing a lower-bound: lower-bound(A;b) guard: {T} uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T exists: x:A. B[x]
Lemmas referenced :  rset-member_wf rleq_wf inf_wf le_witness_for_triv real_wf rset_wf rleq_transitivity rleq-iff-all-rless rless_wf int-to-real_wf sq_stable__rless rless_transitivity2 radd_wf rleq_weakening_rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin universeIsType extract_by_obid isectElimination hypothesisEquality hypothesis inhabitedIsType sqequalRule functionIsType lambdaEquality_alt dependent_functionElimination independent_pairEquality equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies independent_functionElimination setIsType natural_numberEquality setElimination rename imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[b,c:\mBbbR{}].    (inf(A)  =  b  {}\mRightarrow{}  (c  \mleq{}  b  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:\mBbbR{}.  ((x  \mmember{}  A)  {}\mRightarrow{}  (c  \mleq{}  x))))



Date html generated: 2019_10_29-AM-10_40_00
Last ObjectModification: 2019_04_17-PM-03_31_31

Theory : reals


Home Index