Nuprl Lemma : meqfun-equiv-rel
∀[A,X:Type]. ∀[d:metric(X)].  EquivRel(A ⟶ X;f,g.meqfun(d;A;f;g))
Proof
Definitions occuring in Statement : 
meqfun: meqfun(d;A;f;g)
, 
metric: metric(X)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
meqfun: meqfun(d;A;f;g)
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
meq: x ≡ y
, 
metric: metric(X)
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
meq-same, 
meqfun_wf, 
req_witness, 
int-to-real_wf, 
metric_wf, 
istype-universe, 
meq_functionality, 
meq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
universeIsType, 
functionIsType, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A,X:Type].  \mforall{}[d:metric(X)].    EquivRel(A  {}\mrightarrow{}  X;f,g.meqfun(d;A;f;g))
Date html generated:
2019_10_30-AM-06_29_26
Last ObjectModification:
2019_10_02-AM-10_04_31
Theory : reals
Home
Index