Nuprl Lemma : meqfun-equiv-rel

[A,X:Type]. ∀[d:metric(X)].  EquivRel(A ⟶ X;f,g.meqfun(d;A;f;g))


Proof




Definitions occuring in Statement :  meqfun: meqfun(d;A;f;g) metric: metric(X) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] meqfun: meqfun(d;A;f;g) cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q prop: trans: Trans(T;x,y.E[x; y]) meq: x ≡ y metric: metric(X) guard: {T} uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  meq-same meqfun_wf req_witness int-to-real_wf metric_wf istype-universe meq_functionality meq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis universeIsType functionIsType because_Cache sqequalRule productElimination independent_pairEquality lambdaEquality_alt dependent_functionElimination setElimination rename natural_numberEquality independent_functionElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality independent_isectElimination

Latex:
\mforall{}[A,X:Type].  \mforall{}[d:metric(X)].    EquivRel(A  {}\mrightarrow{}  X;f,g.meqfun(d;A;f;g))



Date html generated: 2019_10_30-AM-06_29_26
Last ObjectModification: 2019_10_02-AM-10_04_31

Theory : reals


Home Index