Nuprl Lemma : meqfun-equiv-rel
∀[A,X:Type]. ∀[d:metric(X)].  EquivRel(A ⟶ X;f,g.meqfun(d;A;f;g))
Proof
Definitions occuring in Statement : 
meqfun: meqfun(d;A;f;g), 
metric: metric(X), 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
and: P ∧ Q, 
refl: Refl(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
meqfun: meqfun(d;A;f;g), 
cand: A c∧ B, 
sym: Sym(T;x,y.E[x; y]), 
implies: P ⇒ Q, 
prop: ℙ, 
trans: Trans(T;x,y.E[x; y]), 
meq: x ≡ y, 
metric: metric(X), 
guard: {T}, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
meq-same, 
meqfun_wf, 
req_witness, 
int-to-real_wf, 
metric_wf, 
istype-universe, 
meq_functionality, 
meq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
universeIsType, 
functionIsType, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A,X:Type].  \mforall{}[d:metric(X)].    EquivRel(A  {}\mrightarrow{}  X;f,g.meqfun(d;A;f;g))
 Date html generated: 
2019_10_30-AM-06_29_26
 Last ObjectModification: 
2019_10_02-AM-10_04_31
Theory : reals
Home
Index