Nuprl Lemma : metric-leq-meq
∀[X:Type]. ∀[d1,d2:metric(X)].  (d1 ≤ d2 
⇒ (∀x,y:X.  (x ≡ y 
⇒ x ≡ y)))
Proof
Definitions occuring in Statement : 
metric-leq: d1 ≤ d2
, 
meq: x ≡ y
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
meq: x ≡ y
, 
mdist: mdist(d;x;y)
, 
metric-leq: d1 ≤ d2
, 
prop: ℙ
, 
metric: metric(X)
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
meq_wf, 
metric-leq_wf, 
req_witness, 
int-to-real_wf, 
metric_wf, 
istype-universe, 
mdist-nonneg, 
rleq_antisymmetry, 
rleq_transitivity, 
mdist_wf, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
universeIsType, 
extract_by_obid, 
isectElimination, 
inhabitedIsType, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d1,d2:metric(X)].    (d1  \mleq{}  d2  {}\mRightarrow{}  (\mforall{}x,y:X.    (x  \mequiv{}  y  {}\mRightarrow{}  x  \mequiv{}  y)))
Date html generated:
2019_10_29-AM-11_07_32
Last ObjectModification:
2019_10_02-AM-09_48_56
Theory : reals
Home
Index