Nuprl Lemma : metric-leq-meq

[X:Type]. ∀[d1,d2:metric(X)].  (d1 ≤ d2  (∀x,y:X.  (x ≡  x ≡ y)))


Proof




Definitions occuring in Statement :  metric-leq: d1 ≤ d2 meq: x ≡ y metric: metric(X) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] meq: x ≡ y mdist: mdist(d;x;y) metric-leq: d1 ≤ d2 prop: metric: metric(X) uimplies: supposing a guard: {T}
Lemmas referenced :  meq_wf metric-leq_wf req_witness int-to-real_wf metric_wf istype-universe mdist-nonneg rleq_antisymmetry rleq_transitivity mdist_wf rleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution hypothesis dependent_functionElimination thin hypothesisEquality universeIsType extract_by_obid isectElimination inhabitedIsType sqequalRule lambdaEquality_alt applyEquality setElimination rename natural_numberEquality independent_functionElimination functionIsTypeImplies isect_memberEquality_alt because_Cache isectIsTypeImplies instantiate universeEquality independent_isectElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d1,d2:metric(X)].    (d1  \mleq{}  d2  {}\mRightarrow{}  (\mforall{}x,y:X.    (x  \mequiv{}  y  {}\mRightarrow{}  x  \mequiv{}  y)))



Date html generated: 2019_10_29-AM-11_07_32
Last ObjectModification: 2019_10_02-AM-09_48_56

Theory : reals


Home Index