Nuprl Lemma : metric-leq-meq
∀[X:Type]. ∀[d1,d2:metric(X)].  (d1 ≤ d2 ⇒ (∀x,y:X.  (x ≡ y ⇒ x ≡ y)))
Proof
Definitions occuring in Statement : 
metric-leq: d1 ≤ d2, 
meq: x ≡ y, 
metric: metric(X), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
meq: x ≡ y, 
mdist: mdist(d;x;y), 
metric-leq: d1 ≤ d2, 
prop: ℙ, 
metric: metric(X), 
uimplies: b supposing a, 
guard: {T}
Lemmas referenced : 
meq_wf, 
metric-leq_wf, 
req_witness, 
int-to-real_wf, 
metric_wf, 
istype-universe, 
mdist-nonneg, 
rleq_antisymmetry, 
rleq_transitivity, 
mdist_wf, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
universeIsType, 
extract_by_obid, 
isectElimination, 
inhabitedIsType, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d1,d2:metric(X)].    (d1  \mleq{}  d2  {}\mRightarrow{}  (\mforall{}x,y:X.    (x  \mequiv{}  y  {}\mRightarrow{}  x  \mequiv{}  y)))
 Date html generated: 
2019_10_29-AM-11_07_32
 Last ObjectModification: 
2019_10_02-AM-09_48_56
Theory : reals
Home
Index