Nuprl Lemma : no-nontrivial-decidable-real-prop
∀[A:ℝ ⟶ ℙ]. ((∀x,y:ℝ.  ((x = y) 
⇒ (A[x] 
⇐⇒ A[y]))) 
⇒ (∀r:ℝ. (A[r] ∨ (¬A[r]))) 
⇒ ((∀x:ℝ. A[x]) ∨ (∀x:ℝ. (¬A[x]))))
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
int-to-real_wf, 
no-real-separation-corollary, 
not_wf, 
real_wf, 
exists_wf, 
req_wf, 
all_wf, 
or_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
unionElimination, 
inlFormation, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
dependent_pairFormation, 
because_Cache, 
productElimination, 
productEquality, 
universeEquality, 
voidElimination, 
inrFormation, 
functionEquality, 
cumulativity
Latex:
\mforall{}[A:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (A[x]  \mLeftarrow{}{}\mRightarrow{}  A[y])))
    {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  (\mneg{}A[r])))
    {}\mRightarrow{}  ((\mforall{}x:\mBbbR{}.  A[x])  \mvee{}  (\mforall{}x:\mBbbR{}.  (\mneg{}A[x]))))
Date html generated:
2017_10_03-AM-10_01_51
Last ObjectModification:
2017_06_30-PM-00_32_14
Theory : reals
Home
Index