Nuprl Lemma : no-real-separation-corollary
∀[A,B:ℝ ⟶ ℙ].  ((∃x:ℝ. A[x]) 
⇒ (∃y:ℝ. B[y]) 
⇒ (∀r:ℝ. (A[r] ∨ B[r])) 
⇒ (¬¬(∃x,y:ℝ. ((x = y) ∧ A[x] ∧ B[y]))))
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
real-separation: real-separation(x.A[x];y.B[y])
, 
and: P ∧ Q
, 
real-disjoint: real-disjoint(x.A[x];y.B[y])
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
or: P ∨ Q
Lemmas referenced : 
no-real-separation, 
req_wf, 
real_wf, 
exists_wf, 
not_wf, 
all_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
independent_pairFormation, 
productElimination, 
hypothesis, 
dependent_pairFormation, 
because_Cache, 
productEquality, 
applyEquality, 
functionExtensionality, 
sqequalRule, 
lambdaEquality, 
voidElimination, 
dependent_functionElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}x:\mBbbR{}.  A[x])  {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  B[y])  {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  B[r]))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}x,y:\mBbbR{}.  ((x  =  y)  \mwedge{}  A[x]  \mwedge{}  B[y]))))
Date html generated:
2017_10_03-AM-10_01_36
Last ObjectModification:
2017_06_30-PM-00_24_04
Theory : reals
Home
Index