Nuprl Lemma : no-real-separation-corollary

[A,B:ℝ ⟶ ℙ].  ((∃x:ℝA[x])  (∃y:ℝB[y])  (∀r:ℝ(A[r] ∨ B[r]))  (¬¬(∃x,y:ℝ((x y) ∧ A[x] ∧ B[y]))))


Proof




Definitions occuring in Statement :  req: y real: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False real-separation: real-separation(x.A[x];y.B[y]) and: P ∧ Q real-disjoint: real-disjoint(x.A[x];y.B[y]) all: x:A. B[x] exists: x:A. B[x] prop: so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] cand: c∧ B or: P ∨ Q
Lemmas referenced :  no-real-separation req_wf real_wf exists_wf not_wf all_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality independent_functionElimination independent_pairFormation productElimination hypothesis dependent_pairFormation because_Cache productEquality applyEquality functionExtensionality sqequalRule lambdaEquality voidElimination dependent_functionElimination functionEquality cumulativity universeEquality isect_memberEquality

Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}x:\mBbbR{}.  A[x])  {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  B[y])  {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  B[r]))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}x,y:\mBbbR{}.  ((x  =  y)  \mwedge{}  A[x]  \mwedge{}  B[y]))))



Date html generated: 2017_10_03-AM-10_01_36
Last ObjectModification: 2017_06_30-PM-00_24_04

Theory : reals


Home Index