Nuprl Lemma : no-real-separation
∀[A,B:ℝ ⟶ ℙ].  (¬real-separation(x.A[x];y.B[y]))
Proof
Definitions occuring in Statement : 
real-separation: real-separation(x.A[x];y.B[y])
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
real-separation: real-separation(x.A[x];y.B[y])
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
true: True
, 
real-disjoint: real-disjoint(x.A[x];y.B[y])
, 
cand: A c∧ B
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
isr: isr(x)
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
Lemmas referenced : 
real-separation_wf, 
real_wf, 
false_wf, 
or_wf, 
exists_wf, 
req_wf, 
assert_wf, 
isl_wf, 
isr_wf, 
true_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
equal_wf, 
extensional-real-to-bool-constant, 
bool_wf, 
eqtt_to_assert, 
btrue_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
not_wf, 
req_inversion, 
equal-wf-base, 
btrue_neq_bfalse, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
productElimination, 
sqequalRule, 
rename, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
dependent_functionElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
productEquality, 
unionElimination, 
natural_numberEquality, 
independent_pairFormation, 
unionEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
baseClosed
Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].    (\mneg{}real-separation(x.A[x];y.B[y]))
Date html generated:
2017_10_03-AM-10_01_23
Last ObjectModification:
2017_06_30-AM-11_29_51
Theory : reals
Home
Index