Nuprl Lemma : r-ap_functionality
∀[I:Interval]. ∀[f,g:I ⟶ℝ]. ∀[x:{x:ℝ| x ∈ I} ].  f(x) = g(x) supposing rfun-eq(I;f;g)
Proof
Definitions occuring in Statement : 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
r-ap: f(x)
, 
rfun-eq: rfun-eq(I;f;g)
, 
rfun: I ⟶ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
req_witness, 
all_wf, 
real_wf, 
i-member_wf, 
req_wf, 
set_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
setEquality, 
lambdaEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
dependent_functionElimination
Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[x:\{x:\mBbbR{}|  x  \mmember{}  I\}  ].    f(x)  =  g(x)  supposing  rfun-eq(I;f;g)
Date html generated:
2016_05_18-AM-08_42_52
Last ObjectModification:
2015_12_27-PM-11_50_21
Theory : reals
Home
Index