Nuprl Lemma : r-ap_functionality

[I:Interval]. ∀[f,g:I ⟶ℝ]. ∀[x:{x:ℝx ∈ I} ].  f(x) g(x) supposing rfun-eq(I;f;g)


Proof




Definitions occuring in Statement :  rfun-eq: rfun-eq(I;f;g) r-ap: f(x) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval req: y real: uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  r-ap: f(x) rfun-eq: rfun-eq(I;f;g) rfun: I ⟶ℝ uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} all: x:A. B[x]
Lemmas referenced :  req_witness all_wf real_wf i-member_wf req_wf set_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality independent_functionElimination hypothesis setEquality lambdaEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality dependent_functionElimination

Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[x:\{x:\mBbbR{}|  x  \mmember{}  I\}  ].    f(x)  =  g(x)  supposing  rfun-eq(I;f;g)



Date html generated: 2016_05_18-AM-08_42_52
Last ObjectModification: 2015_12_27-PM-11_50_21

Theory : reals


Home Index