Nuprl Lemma : r2-left-sep
∀a,b,c:ℝ^2.  (r2-left(a;b;c) ⇒ b ≠ c)
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r), 
real-vec-sep: a ≠ b, 
real-vec: ℝ^n, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
rv-pos-angle: rv-pos-angle(n;a;b;c), 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
real-vec-dist: d(x;y), 
real-vec-sep: a ≠ b, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
rge: x ≥ y, 
guard: {T}
Lemmas referenced : 
r2-left-pos-angle, 
zero-rleq-rabs, 
dot-product_wf, 
false_wf, 
le_wf, 
real-vec-sub_wf, 
rmul-is-positive, 
real-vec-norm_wf, 
real-vec-sep-symmetry, 
real-vec-dist-nonneg, 
r2-left_wf, 
real-vec_wf, 
int-to-real_wf, 
rabs_wf, 
rmul_wf, 
real-vec-dist_wf, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rless_transitivity1, 
rless_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
productElimination, 
unionElimination, 
applyEquality, 
independent_isectElimination, 
voidElimination
Latex:
\mforall{}a,b,c:\mBbbR{}\^{}2.    (r2-left(a;b;c)  {}\mRightarrow{}  b  \mneq{}  c)
 Date html generated: 
2017_10_03-AM-11_54_03
 Last ObjectModification: 
2017_08_11-PM-10_38_50
Theory : reals
Home
Index