Nuprl Lemma : r2-left-pos-angle
∀a,b,c:ℝ^2.  (r2-left(a;b;c) ⇒ rv-pos-angle(2;a;b;c))
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r), 
rv-pos-angle: rv-pos-angle(n;a;b;c), 
real-vec: ℝ^n, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
rv-pos-angle: rv-pos-angle(n;a;b;c), 
r2-left: r2-left(p;q;r), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
true: True, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
iff: P ⇐⇒ Q, 
eq_int: (i =z j), 
nequal: a ≠ b ∈ T , 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
nat_plus: ℕ+, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
r2-det_wf, 
real-vec_wf, 
false_wf, 
le_wf, 
dot-product_wf, 
real-vec-sub_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
rminus_wf, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_seg_wf, 
rless_functionality, 
req_weakening, 
r2-det-is-dot-product, 
radd_wf, 
rmul_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
rabs_wf, 
real-vec-norm_wf, 
r2-dot-product, 
rabs_functionality, 
square-rless-implies, 
rleq_weakening_equal, 
real-vec-norm-nonneg, 
rleq_wf, 
square-nonneg, 
rleq_functionality_wrt_implies, 
rmul_functionality_wrt_rleq2, 
rnexp_wf, 
rnexp2-nonneg, 
req_inversion, 
rabs-rnexp, 
req_transitivity, 
rnexp-rmul, 
rmul_functionality, 
real-vec-norm-squared, 
rabs-of-nonneg, 
rnexp2, 
rnexp-rless, 
less_than_wf, 
rnexp0, 
rless-implies-rless, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermVar_wf, 
itermMinus_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
req-iff-rsub-is-0, 
rsub_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
functionEquality, 
addLevel, 
impliesFunctionality, 
inlFormation, 
productEquality, 
int_eqEquality
Latex:
\mforall{}a,b,c:\mBbbR{}\^{}2.    (r2-left(a;b;c)  {}\mRightarrow{}  rv-pos-angle(2;a;b;c))
 Date html generated: 
2017_10_03-AM-11_49_13
 Last ObjectModification: 
2017_04_11-PM-05_35_06
Theory : reals
Home
Index