Nuprl Lemma : r3-dp-prim_wf
r3-dp-prim() ∈ DualPlanePrimitives
Proof
Definitions occuring in Statement : 
r3-dp-prim: r3-dp-prim(), 
member: t ∈ T, 
dual-plane-primitives: DualPlanePrimitives
Definitions unfolded in proof : 
r3-dp-prim: r3-dp-prim(), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
real-vec: ℝ^n, 
all: ∀x:A. B[x]
Lemmas referenced : 
mk-dp-prim_wf, 
real-vec_wf, 
false_wf, 
le_wf, 
real-vec-sep_wf, 
int-to-real_wf, 
int_seg_wf, 
rcp_wf, 
req_wf, 
dot-product_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
because_Cache
Latex:
r3-dp-prim()  \mmember{}  DualPlanePrimitives
 Date html generated: 
2018_05_22-PM-02_44_00
 Last ObjectModification: 
2018_05_09-PM-01_46_43
Theory : reals
Home
Index