Nuprl Lemma : r3-dp-prim_wf

r3-dp-prim() ∈ DualPlanePrimitives


Proof




Definitions occuring in Statement :  r3-dp-prim: r3-dp-prim() member: t ∈ T dual-plane-primitives: DualPlanePrimitives
Definitions unfolded in proof :  r3-dp-prim: r3-dp-prim() member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: real-vec: ^n all: x:A. B[x]
Lemmas referenced :  mk-dp-prim_wf real-vec_wf false_wf le_wf real-vec-sep_wf int-to-real_wf int_seg_wf rcp_wf req_wf dot-product_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis hypothesisEquality lambdaEquality setElimination rename dependent_functionElimination because_Cache

Latex:
r3-dp-prim()  \mmember{}  DualPlanePrimitives



Date html generated: 2018_05_22-PM-02_44_00
Last ObjectModification: 2018_05_09-PM-01_46_43

Theory : reals


Home Index