Nuprl Lemma : mk-dp-prim_wf

[V:Type]. ∀[S,P:V ⟶ V ⟶ ℙ].  ((vec=V, sep=S, perp=P) ∈ DualPlanePrimitives)


Proof




Definitions occuring in Statement :  mk-dp-prim: (vec=V, sep=S, perp=P) dual-plane-primitives: DualPlanePrimitives uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-dp-prim: (vec=V, sep=S, perp=P) dual-plane-primitives: DualPlanePrimitives record+: record+ record-update: r[x := v] record: record(x.T[x]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x top: Top eq_atom: =a y bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q
Lemmas referenced :  eq_atom_wf uiff_transitivity equal-wf-base bool_wf assert_wf atom_subtype_base eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependentIntersection_memberEquality because_Cache functionExtensionality thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality tokenEquality hypothesis lambdaFormation unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality atomEquality independent_functionElimination productElimination independent_isectElimination instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry isect_memberEquality voidElimination voidEquality independent_pairFormation impliesFunctionality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[V:Type].  \mforall{}[S,P:V  {}\mrightarrow{}  V  {}\mrightarrow{}  \mBbbP{}].    ((vec=V,  sep=S,  perp=P)  \mmember{}  DualPlanePrimitives)



Date html generated: 2018_05_21-PM-09_44_54
Last ObjectModification: 2018_05_09-AM-11_55_21

Theory : matrices


Home Index