Nuprl Lemma : mk-dp-prim_wf
∀[V:Type]. ∀[S,P:V ⟶ V ⟶ ℙ].  ((vec=V, sep=S, perp=P) ∈ DualPlanePrimitives)
Proof
Definitions occuring in Statement : 
mk-dp-prim: (vec=V, sep=S, perp=P), 
dual-plane-primitives: DualPlanePrimitives, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
mk-dp-prim: (vec=V, sep=S, perp=P), 
dual-plane-primitives: DualPlanePrimitives, 
record+: record+, 
record-update: r[x := v], 
record: record(x.T[x]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
sq_type: SQType(T), 
guard: {T}, 
record-select: r.x, 
top: Top, 
eq_atom: x =a y, 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
assert_wf, 
atom_subtype_base, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
rec_select_update_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependentIntersection_memberEquality, 
because_Cache, 
functionExtensionality, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
tokenEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
atomEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
impliesFunctionality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[V:Type].  \mforall{}[S,P:V  {}\mrightarrow{}  V  {}\mrightarrow{}  \mBbbP{}].    ((vec=V,  sep=S,  perp=P)  \mmember{}  DualPlanePrimitives)
Date html generated:
2018_05_21-PM-09_44_54
Last ObjectModification:
2018_05_09-AM-11_55_21
Theory : matrices
Home
Index