Nuprl Lemma : mk-dp-prim_wf
∀[V:Type]. ∀[S,P:V ⟶ V ⟶ ℙ].  ((vec=V, sep=S, perp=P) ∈ DualPlanePrimitives)
Proof
Definitions occuring in Statement : 
mk-dp-prim: (vec=V, sep=S, perp=P)
, 
dual-plane-primitives: DualPlanePrimitives
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk-dp-prim: (vec=V, sep=S, perp=P)
, 
dual-plane-primitives: DualPlanePrimitives
, 
record+: record+, 
record-update: r[x := v]
, 
record: record(x.T[x])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
record-select: r.x
, 
top: Top
, 
eq_atom: x =a y
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
assert_wf, 
atom_subtype_base, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
rec_select_update_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependentIntersection_memberEquality, 
because_Cache, 
functionExtensionality, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
tokenEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
atomEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
impliesFunctionality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[V:Type].  \mforall{}[S,P:V  {}\mrightarrow{}  V  {}\mrightarrow{}  \mBbbP{}].    ((vec=V,  sep=S,  perp=P)  \mmember{}  DualPlanePrimitives)
Date html generated:
2018_05_21-PM-09_44_54
Last ObjectModification:
2018_05_09-AM-11_55_21
Theory : matrices
Home
Index