Nuprl Lemma : rabs-rleq-iff
∀x,z:ℝ.  (|x| ≤ z 
⇐⇒ (-(z) ≤ x) ∧ (x ≤ z))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rabs: |x|
, 
rminus: -(x)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
rsub: x - y
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rabs-difference-bound-rleq, 
int-to-real_wf, 
real_wf, 
rabs_wf, 
radd_wf, 
rminus_wf, 
rleq_wf, 
rleq_functionality, 
rabs_functionality, 
radd_functionality, 
rminus-zero, 
req_weakening, 
radd_comm, 
radd-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
productEquality, 
sqequalRule, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
independent_isectElimination, 
promote_hyp
Latex:
\mforall{}x,z:\mBbbR{}.    (|x|  \mleq{}  z  \mLeftarrow{}{}\mRightarrow{}  (-(z)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  z))
Date html generated:
2016_10_26-AM-09_10_05
Last ObjectModification:
2016_08_30-PM-06_45_29
Theory : reals
Home
Index