Nuprl Lemma : real-vec-sep_functionality
∀n:ℕ. ∀a1,a2,b1,b2:ℝ^n.  (req-vec(n;a1;a2) 
⇒ req-vec(n;b1;b2) 
⇒ (a1 ≠ b1 
⇐⇒ a2 ≠ b2))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
real-vec-sep: a ≠ b
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
real-vec-sep_wf, 
req-vec_wf, 
real-vec_wf, 
nat_wf, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
rless_functionality, 
req_weakening, 
real-vec-dist_functionality, 
req-vec_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a1,a2,b1,b2:\mBbbR{}\^{}n.    (req-vec(n;a1;a2)  {}\mRightarrow{}  req-vec(n;b1;b2)  {}\mRightarrow{}  (a1  \mneq{}  b1  \mLeftarrow{}{}\mRightarrow{}  a2  \mneq{}  b2))
Date html generated:
2016_10_26-AM-10_29_28
Last ObjectModification:
2016_09_25-PM-00_54_27
Theory : reals
Home
Index