Nuprl Lemma : real-vec-sep_functionality

n:ℕ. ∀a1,a2,b1,b2:ℝ^n.  (req-vec(n;a1;a2)  req-vec(n;b1;b2)  (a1 ≠ b1 ⇐⇒ a2 ≠ b2))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b req-vec: req-vec(n;x;y) real-vec: ^n nat: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q real-vec-sep: a ≠ b member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  real-vec-sep_wf req-vec_wf real-vec_wf nat_wf int-to-real_wf real-vec-dist_wf real_wf rleq_wf rless_functionality req_weakening real-vec-dist_functionality req-vec_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis natural_numberEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule because_Cache dependent_functionElimination independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a1,a2,b1,b2:\mBbbR{}\^{}n.    (req-vec(n;a1;a2)  {}\mRightarrow{}  req-vec(n;b1;b2)  {}\mRightarrow{}  (a1  \mneq{}  b1  \mLeftarrow{}{}\mRightarrow{}  a2  \mneq{}  b2))



Date html generated: 2016_10_26-AM-10_29_28
Last ObjectModification: 2016_09_25-PM-00_54_27

Theory : reals


Home Index