Nuprl Lemma : req-vec-meq-max-metric
∀[n:ℕ]. ∀[v,w:ℝ^n].  v ≡ w supposing req-vec(n;v;w)
Proof
Definitions occuring in Statement : 
max-metric: max-metric(n)
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
meq: x ≡ y
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
req-vec: req-vec(n;x;y)
, 
all: ∀x:A. B[x]
, 
real-vec: ℝ^n
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
req_witness, 
req-vec_wf, 
real-vec_wf, 
istype-nat, 
iff_weakening_uiff, 
meq_wf, 
max-metric_wf, 
meq-max-metric
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[v,w:\mBbbR{}\^{}n].    v  \mequiv{}  w  supposing  req-vec(n;v;w)
Date html generated:
2019_10_30-AM-08_42_20
Last ObjectModification:
2019_10_02-AM-11_06_20
Theory : reals
Home
Index