Nuprl Lemma : req-vec-meq-max-metric

[n:ℕ]. ∀[v,w:ℝ^n].  v ≡ supposing req-vec(n;v;w)


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) req-vec: req-vec(n;x;y) real-vec: ^n meq: x ≡ y nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec: ^n implies:  Q prop: rev_implies:  Q iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  req_witness req-vec_wf real-vec_wf istype-nat iff_weakening_uiff meq_wf max-metric_wf meq-max-metric
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction hypothesis sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality independent_functionElimination functionIsTypeImplies inhabitedIsType universeIsType isect_memberEquality_alt because_Cache isectIsTypeImplies independent_isectElimination productElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[v,w:\mBbbR{}\^{}n].    v  \mequiv{}  w  supposing  req-vec(n;v;w)



Date html generated: 2019_10_30-AM-08_42_20
Last ObjectModification: 2019_10_02-AM-11_06_20

Theory : reals


Home Index