Nuprl Lemma : rfun-eq_inversion

[I:Interval]. ∀[f,g:I ⟶ℝ].  rfun-eq(I;g;f) supposing rfun-eq(I;f;g)


Proof




Definitions occuring in Statement :  rfun-eq: rfun-eq(I;f;g) rfun: I ⟶ℝ interval: Interval uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rfun-eq: rfun-eq(I;f;g) all: x:A. B[x] guard: {T} sq_stable: SqStable(P) implies:  Q squash: T prop:
Lemmas referenced :  interval_wf rfun_wf rfun-eq_wf req_witness i-member_wf real_wf sq_stable__i-member r-ap_wf req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin hypothesisEquality lemma_by_obid isectElimination setElimination rename independent_isectElimination independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination because_Cache setEquality lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].    rfun-eq(I;g;f)  supposing  rfun-eq(I;f;g)



Date html generated: 2016_05_18-AM-08_42_29
Last ObjectModification: 2016_01_17-AM-02_24_40

Theory : reals


Home Index