Nuprl Lemma : rfun-eq_inversion
∀[I:Interval]. ∀[f,g:I ⟶ℝ].  rfun-eq(I;g;f) supposing rfun-eq(I;f;g)
Proof
Definitions occuring in Statement : 
rfun-eq: rfun-eq(I;f;g)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rfun-eq: rfun-eq(I;f;g)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
interval_wf, 
rfun_wf, 
rfun-eq_wf, 
req_witness, 
i-member_wf, 
real_wf, 
sq_stable__i-member, 
r-ap_wf, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
setEquality, 
lambdaEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].    rfun-eq(I;g;f)  supposing  rfun-eq(I;f;g)
Date html generated:
2016_05_18-AM-08_42_29
Last ObjectModification:
2016_01_17-AM-02_24_40
Theory : reals
Home
Index