Nuprl Lemma : rless-property

x,y:ℝ. ∀n:x < y.  (x n) 4 < n


Proof




Definitions occuring in Statement :  rless: x < y real: less_than: a < b all: x:A. B[x] apply: a add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] rless: x < y sq_exists: x:{A| B[x]} uall: [x:A]. B[x] member: t ∈ T nat_plus: + real: prop: decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T and: P ∧ Q false: False uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] implies:  Q not: ¬A top: Top
Lemmas referenced :  real_wf rless_wf false_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermVar_wf itermAdd_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt add-is-int-iff less_than_wf decidable__lt nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis dependent_functionElimination addEquality applyEquality dependent_set_memberEquality natural_numberEquality because_Cache unionElimination imageElimination productElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp sqequalRule baseApply closedConclusion baseClosed independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}x,y:\mBbbR{}.  \mforall{}n:x  <  y.    (x  n)  +  4  <  y  n



Date html generated: 2016_05_18-AM-07_31_55
Last ObjectModification: 2016_01_17-AM-02_00_19

Theory : reals


Home Index