Nuprl Lemma : rless-property
∀x,y:ℝ. ∀n:x < y.  (x n) + 4 < y n
Proof
Definitions occuring in Statement : 
rless: x < y
, 
real: ℝ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
real: ℝ
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
and: P ∧ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
real_wf, 
rless_wf, 
false_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
add-is-int-iff, 
less_than_wf, 
decidable__lt, 
nat_plus_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
addEquality, 
applyEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
because_Cache, 
unionElimination, 
imageElimination, 
productElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}x,y:\mBbbR{}.  \mforall{}n:x  <  y.    (x  n)  +  4  <  y  n
Date html generated:
2016_05_18-AM-07_31_55
Last ObjectModification:
2016_01_17-AM-02_00_19
Theory : reals
Home
Index