Nuprl Lemma : rminus-rneq-zero
∀x:ℝ. (-(x) ≠ r0
⇐⇒ x ≠ r0)
Proof
Definitions occuring in Statement :
rneq: x ≠ y
,
rminus: -(x)
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
rnonzero: rnonzero(x)
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
rminus: -(x)
,
prop: ℙ
,
squash: ↓T
,
uall: ∀[x:A]. B[x]
,
real: ℝ
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
uimplies: b supposing a
,
guard: {T}
,
rev_implies: P
⇐ Q
,
true: True
Lemmas referenced :
less_than_wf,
squash_wf,
true_wf,
absval_sym,
absval_wf,
nat_wf,
iff_weakening_equal,
rnonzero_wf,
rminus_wf,
real_wf,
absval-minus,
rnonzero-iff,
rneq_wf,
int-to-real_wf,
iff_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
independent_pairFormation,
sqequalHypSubstitution,
productElimination,
thin,
dependent_pairFormation,
hypothesisEquality,
sqequalRule,
hypothesis,
addLevel,
hyp_replacement,
equalitySymmetry,
applyEquality,
lambdaEquality,
imageElimination,
introduction,
extract_by_obid,
isectElimination,
equalityTransitivity,
intEquality,
natural_numberEquality,
equalityEquality,
setElimination,
rename,
minusEquality,
because_Cache,
independent_isectElimination,
independent_functionElimination,
imageMemberEquality,
baseClosed,
levelHypothesis,
impliesFunctionality,
dependent_functionElimination
Latex:
\mforall{}x:\mBbbR{}. (-(x) \mneq{} r0 \mLeftarrow{}{}\mRightarrow{} x \mneq{} r0)
Date html generated:
2016_10_26-AM-09_07_59
Last ObjectModification:
2016_07_12-AM-08_17_04
Theory : reals
Home
Index