Nuprl Lemma : rminus-rneq-zero

x:ℝ(-(x) ≠ r0 ⇐⇒ x ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rminus: -(x) int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q rnonzero: rnonzero(x) exists: x:A. B[x] member: t ∈ T rminus: -(x) prop: squash: T uall: [x:A]. B[x] real: subtype_rel: A ⊆B nat: uimplies: supposing a guard: {T} rev_implies:  Q true: True
Lemmas referenced :  less_than_wf squash_wf true_wf absval_sym absval_wf nat_wf iff_weakening_equal rnonzero_wf rminus_wf real_wf absval-minus rnonzero-iff rneq_wf int-to-real_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality sqequalRule hypothesis addLevel hyp_replacement equalitySymmetry applyEquality lambdaEquality imageElimination introduction extract_by_obid isectElimination equalityTransitivity intEquality natural_numberEquality equalityEquality setElimination rename minusEquality because_Cache independent_isectElimination independent_functionElimination imageMemberEquality baseClosed levelHypothesis impliesFunctionality dependent_functionElimination

Latex:
\mforall{}x:\mBbbR{}.  (-(x)  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0)



Date html generated: 2016_10_26-AM-09_07_59
Last ObjectModification: 2016_07_12-AM-08_17_04

Theory : reals


Home Index