Nuprl Lemma : rminus-rneq-zero
∀x:ℝ. (-(x) ≠ r0 
⇐⇒ x ≠ r0)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
rminus: -(x)
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
rnonzero: rnonzero(x)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
rminus: -(x)
, 
prop: ℙ
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
true: True
Lemmas referenced : 
less_than_wf, 
squash_wf, 
true_wf, 
absval_sym, 
absval_wf, 
nat_wf, 
iff_weakening_equal, 
rnonzero_wf, 
rminus_wf, 
real_wf, 
absval-minus, 
rnonzero-iff, 
rneq_wf, 
int-to-real_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
intEquality, 
natural_numberEquality, 
equalityEquality, 
setElimination, 
rename, 
minusEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
levelHypothesis, 
impliesFunctionality, 
dependent_functionElimination
Latex:
\mforall{}x:\mBbbR{}.  (-(x)  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0)
Date html generated:
2016_10_26-AM-09_07_59
Last ObjectModification:
2016_07_12-AM-08_17_04
Theory : reals
Home
Index